小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只…
小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://…
[INTERSPEECH 2019接收] 链接:https://arxiv.org/pdf/1904.03479.pdf 这篇文章在会议的speaker session中.本文主要讨论了说话人验证中的损失函数large margin softmax loss(结合了softmax和margins的losses). 本文从x-vector中提取speaker embedding. 这篇文章在一个公式中统一了多种margin项: 其中N表示训练样本数目,C表示训练集中的说话人数目,s是尺度因子.m1…
目录 概 主要内容 Wang H, Wang Y, Zhou Z, et al. CosFace: Large Margin Cosine Loss for Deep Face Recognition[C]. computer vision and pattern recognition, 2018: 5265-5274. @article{wang2018cosface:, title={CosFace: Large Margin Cosine Loss for Deep Face Recog…
paper url: https://arxiv.org/pdf/1612.02295 year:2017 Introduction 交叉熵损失与softmax一起使用可以说是CNN中最常用的监督组件之一. 尽管该组件简单而且性能出色, 但是它只要求特征的可分性, 没有明确鼓励网络学习到的特征具有类内方差小, 类间方差大的特性. 该文中,作者提出了一个广义的 large margin softmax loss(L-Softmax),是large margin系列的开篇之作. 它明确地鼓励了学习特…
(1) softmax loss <1> softmax loss的函数形式为:     (1) zi为softmax的输入,f(zi)为softmax的输出. <2> softmax loss对其输入zj求导:      (2) 如果j==k,则zk是变量,否则zj是变量. 和的导数等于导数的和,对和中某个元素求导的话有: (2) softmax_loss_layer.cpp中的Forward_cpu()函数: template <typename Dtype> vo…
小喵的唠叨话:这次的博客,真心累伤了小喵的心.但考虑到知识需要巩固和分享,小喵决定这次把剩下的内容都写完. 小喵的博客:http://www.miaoerduo.com 博客原文: http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(下).html ‎ 四.数据的重整,简单的划分 前面的Data层用于生成成对的输入数据,Normalization层,用于将feature归一化,那么之后是不是就可以使用ContrastiveLoss层进…
小喵的唠叨话:我们在上一篇博客里面,介绍了Caffe的Data层的编写.有了Data层,下一步则是如何去使用生成好的训练数据.也就是这一篇的内容. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实现(中).html 二.精髓,DeepID2 Loss层 DeepID2这篇论文关于verification signal的部分,给出了一个用于监督verificatio…
小喵的唠叨话:小喵最近在做人脸识别的工作,打算将汤晓鸥前辈的DeepID,DeepID2等算法进行实验和复现.DeepID的方法最简单,而DeepID2的实现却略微复杂,并且互联网上也没有比较好的资源.因此小喵在试验之后,确定了实验结果的正确性之后,才准备写这篇博客,分享给热爱Deep Learning的小伙伴们. 小喵的博客:http://www.miaoerduo.com 博客原文:http://www.miaoerduo.com/deep-learning/基于caffe的deepid2实…
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cross entropy了解吗?相信很多人不一定清楚.虽然网上的资料很多,但是质量参差不齐,常常看得眼花缭乱.为了让大家少走弯路,特地整理了下这些知识点的来龙去脉,希望不仅帮助自…