算法笔记-状压dp】的更多相关文章

状压dp 就是把状态压缩的dp 这样还是一种暴力但相对于纯暴力还是优雅的多. 实际上dp就是经过优化的暴力罢了 首先要了解位运算 给个链接吧 [https://blog.csdn.net/u013377068/article/details/81028453] 一些例题 之所以很难理解是因为没搞懂那些位运算的特点 在接下来的代码中会讲 poj 2411 [http://poj.org/problem?id=2411] 就是给你一个mn的网格,有两种砖12和2*1: 问你刚好填满的方案有多少 分析…
点此看题面 大致题意: 用随机算法求一张图的最大独立集:每次随机一个排列,从前到后枚举排列中的点,如果当前点加入点集中依然是独立集,就将当前点加入点集中,最终得到的点集就是最大独立集.求这个随机算法的正确率. 前言 \(PKUWC\)的题目就是妙啊. 题目很神仙,但看完题解后就很简单了,可这种东西像我这般蒟蒻根本想不到啊...... 状压\(DP\) 设\(f_{i,j}\)表示当前已考虑过点集\(i\),最大独立集为\(j\)的方案数. 每次我们枚举一个不在点集中的点\(k\),设与其相邻的点…
状压 \(dp\) 1.[SDOI2009]Bill的挑战 \(f[i][j]\) 表示匹配到字符串的第 \(i\) 位状态为 \(j\) 的方案数 那么方程就很明显了,每次枚举第 \(i\) 位的字母 \(alpha\) 然后 \(O(n)\) 判断就好了 时间复杂度 \(O(26Tlen2^nn)\) \(Code\ Below:\) #include <bits/stdc++.h> #define ll long long using namespace std; const int p…
题目链接 loj2540 题解 有一个朴素三进制状压\(dp\),考虑当前点三种状态:没考虑过,被选入集合,被排除 就有了\(O(n3^{n})\)的转移 但这样不优,我们考虑优化状态 设\(f[i][S]\)表示独立集大小为\(i\),不可选集合为\(S\)[要么是已经在独立集中,要么已经被排除了] 那么剩余点都是可选的 就枚举剩余点\(u\),记\(u\)相邻的集合为\(S_u\),那么当\(u\)加入后,集合\(S_u\)的点都不能选,但是由于所有点都会加入排列之中,\(S_u\)中除了\…
状压dp的核心在于,当我们不能通过表现单一的对象的状态来达到dp的最优子结构和无后效性原则时,我们可能保存多个元素的有关信息··这时候利用2进制的01来表示每个元素相关状态并将其压缩成2进制数就可以达到目的····此时熟悉相关的位运算就很重要了····以下是常见的一些需要位运算方法 然后说实话状压dp其它方面就和普通dp差不多了···它不像数位区间树形那样或多或少好歹有自己一定套路或规律····如何想到转移方程和状态也就成了其最难的地方··· 例题: 1.Corn Fields(poj3254)…
题目分析: 听说这题考场上能被$ O(4^n) $的暴力水过,难不成出题人是毕姥爷? 首先思考一个显而易见的$ O(n^2*2^n) $的暴力DP.一般的DP都是考虑最近的加入了哪个点,然后删除后递归进行状压DP.由于这道题的题目询问方式是反过来的,处理方式也反过来. 令$ f[n][S] $表示当前有$ S $这些点,期望这些点能够构成独立集大小为$ n $.正向的考虑选择了哪个点,并把与这个点有连边的所有点在集合内进行删除,令找到的新状态为$ f[n-1][P] $.我们把$ P $中的结点…
[题目]1920 空间统计学 [题意]给定m维空间中的n个点坐标,满足每一维坐标大小都在[0,3]之间,现在对于[0,3*m]的每个数字x统计曼哈顿距离为x的有序点对数.\(n \leq 2*10^5,m \leq 9\). [算法]状压DP m范围很小,考虑设计状压DP的状态,可以想到设到达某个坐标j(将m维坐标压成m位四进制数)步数为k(距离等价于步数)的点数,但是难以转移.考虑按维转移,考虑每一维往外走的情况来转移. 设\(f_{i,j,k}\)表示前i维,到达坐标j,步数为k的点数.转移…
[题意]n个点等距排列在长度为n-1的直线上,初始点1~k都有一辆公车,每辆公车都需要一些停靠点,每个点至多只能被一辆公车停靠,且每辆公车相邻两个停靠点的距离至多为p,所有公车最后会停在n-k+1~n.给定n,k,p,求满足要求的方案数%30031.n<=10^9,k<=p<=10. [算法]状压DP+矩阵快速幂 [题解]开始没看到p<=10,其实很显然p>k的话第一车就不满足要求了.考虑相邻停靠点没有关键信息,只能状压. 因为车都是从头开到尾的,所以直接考虑i~i-p+1的…
一.关于状压 dp 为了规避不确定性,我们将需要枚举的东西放入状态.当不确定性太多的时候,我们就需要将它们压进较少的维数内. 常见的状态: 天生二进制(开关.选与不选.是否出现--) 爆搜出状态,给它们编号 1. 状态跟某一个信息集合内的每一条都有关.(如 dp 套 dp) 2. 若干条精简而相互独立的信息压在一起处理. (如每个数字是否出现) 在使用状压 dp 的题目当中,往往能一眼看到一些小数据范围的量,切人点明确.而有些题,这样的量并不明显,需要更深人地分析题目性质才能找到. 二.预备知识…
嗯,作为一只蒟蒻,今天再次学习了状压dp(学习借鉴的博客) 但是,依旧懵逼·································· 这篇学习笔记是我个人对于状压dp的理解,如果有什么不对的地方,希望大家指出. 闲话不多说,进入正题. 首先,在介绍状压dp之前,我们先来了解一下状态压缩(常用的为二进制,why?[因为其他的我不会]). 什么是状态压缩呢?顾名思义,就是将数转换为二进制来进行一些操作. 基本操作: 看完基本操作,我们来看一下一些稍微复杂的操作. 操作 运算 取出整数n在二…