为什么Fourier分析?】的更多相关文章

本文旨在给出Fourier分析的几个动机. 目录 波动方程 热导方程 Lapalce变换 求和公式 表示论 特征理论 参考资料 波动方程 考虑一维的波动方程最简单的边值问题$$u(x,t), x\in [0,L], t\in [0,\infty)\qquad \begin{cases}\frac{\partial^2 u}{\partial t^2}=a^2\frac{\partial^2 u}{\partial x^2}\qquad (\textrm{波动方程})\\ u(x,0)=\varp…
前言 傅立叶分析的作用是把一个函数变成一堆三角函数的和的形式,也就是分解.首先引入的是傅立叶级数,Fourier级数的作用是把函数变为可数无限个三角函数的和,而且这些三角函数的频率都是某个基频的整数倍.如果这个基频无限趋近于0,那么在极限的情况下这函数的参数(频率)就连续了,将连续时域函数映射到连续的频域函数的变换就是标准的傅立叶变换. 由于工程采集的信号大多都是离散的,把时域离散化以后不可能在得到连续的频域函数,所以在频域上也不连续了,这种离散时域序列到离散频域序列的变换称之为离散傅立叶变换(…
此处推导参考(照抄) A First Course in Wavelets with Fourier Analysis Second Edition, Albert Boggess& Francis J.Narcowich 由傅立叶级数推广到傅立叶变换只需要一步——求一个极限. 当趋近于正无穷的时候,整个傅立叶级数逆变换(或者叫还原)就成为一个积分,此时正向求参数数列的式子天然是个积分,只不过此时随着趋近于正无穷,从数列变为函数,我们管它叫频谱,一般记作. 首先考虑定义在上的的傅立叶级数: 其中…
http://blog.sina.com.cn/s/blog_68f3a4510100qvp1.html 注:转载请注明出处——by author. 我们知道Fourier分析是信号处理里很重要的技术,matlab提供了强大的信号处理能力,但是有一些细节部分需要我们注意. 记信号f(t)的起始时间为t_start, 终止时间为t_end, 采样周期为t_s, 可以计算信号的持续时间Duration为 t_end – t_start, 信号离散化造成的采样点数 N = Duration/t_s +…
摘要:Fourier transform 是一个强大的概念,用于各种领域,从纯数学到音频工程甚至金融. 本文分享自华为云社区<使用 scipy.fft 进行Fourier Transform:Python 信号处理>,作者: Yuchuan. scipy.fft模块 傅立叶变换是许多应用中的重要工具,尤其是在科学计算和数据科学中.因此,SciPy 长期以来一直提供它的实现及其相关转换.最初,SciPy 提供了该scipy.fftpack模块,但后来他们更新了他们的实现并将其移到了scipy.f…
小波变换 小波,一个神奇的波,可长可短可胖可瘦(伸缩平移),当去学习小波的时候,第一个首先要做的就是回顾傅立叶变换(又回来了,唉),因为他们都是频率变换的方法,而傅立叶变换是最入门的,也是最先了解的,通过傅立叶变换,了解缺点,改进,慢慢的就成了小波变换.主要的关键的方向是傅立叶变换.短时傅立叶变换,小波变换等,第二代小波的什么的就不说了,太多了没太多意义.当然,其中会看到很多的名词,例如,内积,基,归一化正交,投影,Hilbert空间,多分辨率,父小波,母小波,这些不同的名词也是学习小波路上的标…
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法,只是用了不同的方法解决了同一个问题,这样我们就形成了一个统一的观察视角,不再将深度神经网络看成是一个独立的算法. 第四章:讨论通用逼近理论,这是为了将视角提高到一个更高的框架体系,通用逼近理论证明了所有的目标函数都可以拟合,换句话说就是,所有的问题都可以通过深度学习解决.但是通用逼近理论并没有告诉…
FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换(DFT)的快速算法. 采样得到的数字信号,做FFT变换,N个采样点,经过FFT之后,就可以得到N个点的FFT结果.为了方便进行FFT运算,通常N取2的整数次方. 假设信号: S=2+3*cos(2*pi*50*t-pi*30/180)+1.5*cos(2*pi*75*t+pi*90/180) 它含有:2V的直流分量 频率为50Hz.相位为-30度.幅度为3V的交流信号 频率为75Hz.相位为90度…
dennis gabor 题目:从傅里叶(Fourier)变换到伽柏(Gabor)变换再到小波(Wavelet)变换 本文是边学习边总结和摘抄各参考文献内容而成的,是一篇综述性入门文档,重点在于梳理傅里叶变换到伽柏变换再到小波变换的前因后果,对于一些概念但求多而全,所以可能会有些理解的不准确,后续计划分别再展开学习研究.通过本文可以了解到: 1)傅里叶变换的缺点:2)Gabor变换的概念及优缺点:3)什么是小波:4)小波变换的概念及优点. 一.前言         首先,我必须说一下,在此之前,…
可以使用傅里叶变换来分析数据中的变化,例如一个时间段内的自然事件. 天文学家使用苏黎世太阳黑子相对数将几乎 300 年的太阳黑子的数量和大小制成表格.对大约 1700 至 2000 年间的苏黎世数绘图. load sunspot.dat year = sunspot(:,1); relNums = sunspot(:,2); plot(year,relNums) xlabel('Year') ylabel('Zurich Number') title('Sunspot Data') 为了更详细地…