【BZOJ】4671: 异或图】的更多相关文章

题面 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Bell)).就是 dfs ,记录已经有了几个集合,枚举当前元素放在哪个集合里(给它标一个 id )或者当前元素自己开一个集合. 然后就有了限制:不同点集之间不能有边.本来想限制同一点集必须是连通的,但不好限制,所以就不限制了,把这部分的影响算在容斥系数里. 如果限制不同点集之间不能有边,可以考虑高斯消…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方案数: 我们希望得到恰好有一个连通块的方案数,但这里不能直接 \( + t[1] - t[2] + t[3] - t[4] ... \),因为每个“恰好 \( i \) 个连通块”的情况并不是在各种 \( t[j] ( j<=i ) \) 中只被算了一次,而是因为标号,被算了 \( S(i,j) \…
Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 \(S\) 有多少个子集的异或为一个连通图. \(1\leq n\leq 10,1\leq s\leq 60\) Solution 不妨记 \(f_x\) 为连通块个数至少为 \(x\) 的方案数, \(g_x\) 为连通块恰好为 \(x\) 的方案数. 容易得到: \[f_x=\sum_{i=x}…
题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m = 1]\) 也就是说,我们求出m个系数,让这个式子只在[m = 1]的时候为1,其余时候为0 啥玩意啊怎么求啊 我们显然可以\(n^2\)的递推求出来,类似解方程 但是我们打个表就会发现是\(f_{i} = (-1)^{i - 1}(i - 1)!\) 然后我们再考虑这个式子的容斥意义,假如一个图有m个联通…
[BZOJ4671]异或图(斯特林反演) 题面 BZOJ Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串…
bzoj4671 异或图(斯特林反演,线性基) 祭奠天国的bzoj. 题解时间 首先考虑类似于容斥的东西. 设 $ f_{ i } $ 为至少有 $ i $ 个连通块的方案数, $ g_{ i } $ 为正好有 $ i $ 个连通块的方案数. 那么有 \[f_{ m } = \sum\limits_{ i = m }^{n} \begin{Bmatrix} i \\ m \end{Bmatrix} g_{ i } \] 斯特林反演就有 \[g_{ 1 } = \sum\limits_{ i =…
[BZOJ4671]异或图 - xjr01 - 博客园 考虑先算一些限制少的情况 gi表示把n个点的图,划分成i个连通块的方案数 连通块之间不连通很好处理(怎么处理看下边),但是内部必须连通,就很难办了 所以再降低条件,fi表示,把n个点的图,划分成i个"连通块",保证连通块之间不会有边相连,但是内部可以不连通的方案数 fi计算方法如下: 用Bell(n)的复杂度枚举集合划分,然后相邻集合之间不能连边, 然后考虑凑出符合这个集合划分的图有多少个,异或高斯消元,xi表示第i个图选择与否,…
题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个图组成的集合有多少个子集的异或图为一个连通图. \(n\leq 10,m\leq 60\) 题解 考虑枚举图的子集划分,让被划分到不同子集的点之间没有连边,而在同一个子集里面的点可以连通,可以不连通. 可以用高斯消元(线性基)得到满足条件的图的个数.设枚举的子集划分有\(k\)个集合,那么容斥系数就…
bzoj4671: 异或图 Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 g…
题目 神仙题啊神仙题 显然这个东西一脸不可求的样子啊,这种东西我们显然需要搞一个容斥什么的 于是设\(g_i\)表示至少存在\(i\)个联通块(联通块内部的边没有要求,联通块和联通块之间不存在边)的方案数,\(f_i\)表示恰有\(i\)个联通块 有 \[g_x=\sum_{i=x}^n\begin{Bmatrix}i\\x\end{Bmatrix}f_i\] 即我们对于那些联通块个数多于\(x\)个的情况,可以把这\(i\)个联通快分成\(k\)组,每一组作为一个新的"联通块",于是…
题意 定义两个结点数相同的图 \(G_1\) 与图 \(G_2\) 的异或为一个新的图 \(G\) ,其中如果 \((u, v)\) 在 \(G_1\) 与 \(G_2\) 中的出现次数之和为 \(1\) , 那么边 \((u, v)\) 在 \(G\) 中, 否则这条边不在 \(G\) 中. 现在给定 \(s\) 个结点数相同的图 \(G_{1...s}\) , 设 \(S = {G_1, G_2, \cdots , G_s}\) , 请问 \(S\) 有多少个子集的异或为一个连通图? \(n…
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4671 题解 半年前刚学计数的时候对这道题怀着深深的景仰,现在终于可以来做这道题了. 类似于一般的容斥和反演题,我们发现整个图是联通的图非常不好求.于是我们转化为整个图钦定了有 \(i\) 个块必须不连通,其余任意的方案数. 然后考虑这个怎么求,我们可以暴力枚举一下把这些数分成很多组,显然方案数就时 \(B_n\)(贝尔数,就是 \(\sum\limits_{i=0}^n \begin{Bma…
NOIP后的第一次更新嗯. Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路. 举例来说,上面的第一个例子是一张仙人图,而第二个不是——注意到它有三条简单回路:(4,3,2,1,6,5,4).(7,8,9,10,2,3,7)以及(4,3,7,8,9,10,2,1,6,5,4),而(2,3)同时出现在前两个的简单回路里.另外,第三张图也不是仙人…
题目描述 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? 题解 先考虑一个dp. 对于这种连通性问题的dp我们通常是设一个f数组一个g数组,然后找到这两个数组的关系. 我们定义g[i]表示恰好有i个…
传送门 题意: 给出\(s,s\leq 60\)张图,每张图都有\(n,n\leq 10\)个点. 现在问有多少个图的子集,满足这些图的边"异或"起来后,这张图为连通图. 思路: 直接考虑判断图的连通不好判断,所以考虑枚举连通块来进行容斥. 定义\(f_i\)表示有\(i\)个连通块的答案,发现连通块这个东西也不好处理,我们只能处理出有多少个连通块,但无法确定每个连通块内部的连通关系. 定义\(g_i\)为至少有\(i\)个连通块的方案数,那么就有关系式:\(\displaystyle…
Description 定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与 G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中. 现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异 或为一个连通图? Input 第一行为一个整数s, 表图的个数. 接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原图通过…
1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2340  Solved: 1464[Submit][Status][Discuss] Description 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b ,第二行为1~n 的排列. Output 输出一个整数,即中位数为b的连续子序列个数.…
题目链接:BZOJ - 1303 题目分析 首先,找到 b 的位置 Pos, 然后将数列中小于 b 的值赋为 -1 ,大于 b 的值赋为 1 . 从 b 向左扩展,不断算 Sum[i, b - 1] ,然后将 Cnt[Sum[i, b - 1]] 加一,这样就算出每个左边的Sum值有多少个了. 然后从 b 向右扩展,不断算 Sum[b + 1, i] ,然后 Ans += Cnt[Sum[b + 1, i]] . 代码 #include <iostream> #include <cstd…
标题效果:特定n的数量,这种需求n数22 XOR的值前者k少 首先,我们建立了一个二进制的所有数字Trie木,您可以使用Trie木size域检查出一些其他的数字XOR值首先k少 然后,我们要保持一个堆.其他XOR的整数值首先2增加堆(第一小是自己异或自己.不在题目要求范围内).当取出一个数异或值的第k小后,将第k+1小增加堆 一个异或值会被两个数分别取出一次.所以取出奇数次时输出,取2*k次就可以 时间复杂度O(nlogn) #include<cstdio> #include<cstri…
1303: [CQOI2009]中位数图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2737  Solved: 1698[Submit][Status][Discuss] Description 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b ,第二行为1~n 的排列. Output 输出一个整数,即中位数为b的连续子序列个数.…
第二类斯特林数模版题 需要一些组合数的小$ trick$ upd:这里更新了本题巧妙的$ O(k)$做法,虽然常数很大就是了 传送门:here 题意:求所有$ n$个节点的无重边自环图的价值和,定义一张图的价值为每个点度数的$ k$次方和,点有标号 $ Solution$ 显然每个节点的贡献是独立的 枚举每个节点的度数,和这个点不联通的边可连可不连 $ ans=n*2^{\frac{(n-1)(n-2)}{2}}\ \ \sum\limits_{i=0}^{n-1}i^kC_{n-1}^i$ 我…
对于每个灯,我们用一个变量表示其决策,xu=0表示不选,xu=1表示选.因为每个灯最后必须都亮,所以每个等都对应一个异或方程. 解这个异或方程组,有几种情况: 1.存在唯一解(得到的上三角系数矩阵的主对角线上的元素全部为1) 2.无解(存在某行系数全为0,但等式右边不为0) 3.存在v个自由元(即主对角线上有v个0,我们枚举每个自由元的取值,有2v种情况) 我们统计所有合法解的最小的值作为答案. /*************************************************…
1303: [CQOI2009]中位数图 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1303 Description 给出1~n的一个排列,统计该排列有多少个长度为奇数的连续子序列的中位数是b.中位数是指把所有元素从小到大排列后,位于中间的数. Input 第一行为两个正整数n和b ,第二行为1~n 的排列. Output 输出一个整数,即中位数为b的…
字典树可以$o(logn)查找第k大$ 使用$可持久化Trie 区间查找第k大,然后首先把每个数异或之后的最小丢进小根堆中,然后一个一个取出,取出后就再丢次小,一共取k次$ 总的时间复杂度为$O(klogn)$ 本来的考虑是 先找出第k大,然后在$Trie上DFS把小于这个数的全丢进vector  然后发现会有很多无用状态会搜索到,T掉$ #include <bits/stdc++.h> using namespace std; #define N 100010 int n, k, arr[N…
[Lydsy1711月赛]图的价值 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 245  Solved: 128[Submit][Status][Discuss] Description “简单无向图”是指无重边.无自环的无向图(不一定连通). 一个带标号的图的价值定义为每个点度数的k次方的和. 给定n和k,请计算所有n个点的带标号的简单无向图的价值之和. 因为答案很大,请对998244353取模输出.   Input 第一行包含两个正整数n,…
题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3689 题解: 利用一个优先队列存储当前取到的数 然后再写一颗支持查找异或的k大值的Trie即可 由于同一个值\(x\)可能被\(a_i\text{ xor }a_j\)和\(a_j\text{ xor }a_i\)一起取到 所以只有在奇数次取值的时候再更新 #include <queue> #include <cstdio> #include <cstring>…
题目大意:给你一个序列,求出第$K$大的两两异或值 先建出来可持久化$01Trie$ 用一个$set$/堆存结构体,存某个异或对$<i,j>$的第二关键字$j$,以及$ai\;xor\;aj$的值,堆中按异或值从小到大排序 每次取出一对$<i,j>$并把它从堆中删除 在$[0,j-1]$的 可持久化$01Trie$ 中把$a_{i}$这个数删除 再查询$[0,j-1]$中和$a_{j}$的异或最大值,重新推入堆中... 反复操作$K$次即可 删除操作中的细节比较多 #include…
定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的度数是多少,然后试着去算该情况下的贡献,即 \(\sum_{i=0}^{n-1}\binom{n-1}{i}i^k\) 由于一共有 \(n\) 个点,而除了我们限定的边之外其余的边都是可以随便连的. 故 \(Ans=n\times 2^{\frac{(n-1)(n-2)}{2}}\times \su…
题目链接 题意 : 中文题.点链接 分析 : 直接建 Trie 图.在每一个串的末尾节点记录其整串长度.方便删串操作 然后对于问询串.由于可能有删串操作 所以在跑 Trie 图的过程当中需要拿个栈记录一下路径 跑 Trie 图的意思就是说将问询串字符一个个拿出来 然后一直找当前节点的下一个对应字母的节点 由于是 Trie 图.所以在 Fail 的时候也会自动跑到对应的节点 这和普通的 AC 自动机不一样.在 Fail 的时候要每次暴力跳 Fail 节点 然后直接模拟即可 #include<bit…