One of the most fundamental concepts of modern statistics is that of likelihood. In each of the discrete random variables we have considered thus far, the distribution depends on one or more parameters that are, in most statistical applications, unkn…
negative log likelihood文章目录negative log likelihood似然函数(likelihood function)OverviewDefinition离散型概率分布(Discrete probability distributions)连续型概率分布(Continuous probability distributions)最大似然估计(Maximum Likelihood Estimation,MLE)对数似然(log likelihood)负对数似然(ne…
转载请标明出处:http://www.cnblogs.com/tiaozistudy/p/log-likelihood_distance.html 本文是“挑子”在学习对数似然距离过程中的笔记摘录,文中不乏一些个人理解,不当之处望多加指正. 对数似然距离是基于统计理论的一种计算簇与簇相异度的方法,最早用于BIRCH层次聚类算法的改进.本文旨在详细介绍对数似然距离的统计学基础.方法思想和计算过程,希望帮助更多地人欣赏它.熟悉它.使用它. 1.极大似然估计(Maximum Likelihood Es…
二次代价函数 $C = \frac{1} {2n} \sum_{x_1,...x_n} \|y(x)-a^L(x) \|^2$ 其中,C表示代价函数,x表示样本,y表示实际值,a表示输出值,n表示样本的总数:整个的意思就是把n个y-a的平方累加起来,再除以2求一下均值. 为简单起见,先看下 一个样本 的情况,此时二次代价函数为:$C = \frac{(y-a)^2} {2}$ $a=\sigma(z), z=\sum w_j*x_j +b$  ,其中a就代表激活函数的输出值,这个符号$\sigm…
一.定义     最大似然预计是一种依据样本来预计模型參数的方法.其思想是,对于已知的样本,如果它服从某种模型,预计模型中未知的參数,使该模型出现这些样本的概率最大.这样就得到了未知參数的预计值. 二.过程     举例而言,我们要统计全国人口的体重,首先如果全国人口的体重服从正态分布,但均值和方差未知.因为我们没有那么多的人力和物力来统计,因此我们能够採样,通过最大似然预计的方法来评估这个正态分布的均值和方差. 1. 列出似然函数     如果样本是独立同分布,正态分布的概率密度函数用表示,未…
<Machine Learning in Action> 为防止连续乘法时每个乘数过小,而导致的下溢出(太多很小的数相乘结果为0,或者不能正确分类) 训练: def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords = len(trainMatrix[0]) pAbusive = sum(trainCategory)/float(numTrainDocs) p0Num = ones(num…
模型已定,参数未知 已知某个随机样本满足某种概率分布,但是其中具体的参数不清楚,参数估计就是通过若干次试验,观察其结果,利用结果推出参数的大概值.最大似然估计是建立在这样的思想上:已知某个参数能使这个样本出现的概率最大,我们当然不会再去选择其他小概率的样本,所以干脆就把这个参数作为估计的真实值. 假设模型满足某种总体分布,但是不知道模型的参数,通过样本去估计参数. 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的…
写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度下降法解决MLA.然后分析加入不同范数(L0, L1, L2)对线性回归的影响.其次,另外一个重点是Logistic回归,他们分别用来 做回归和分类.线性回归与Logistic回归的区别,以及由Logistic回归引出的SoftMax回归及其用途. 一.线性回归 (1)残差 对于线性回归模型,我们一…
转载请注明出处 Leavingseason http://www.cnblogs.com/sylvanas2012/p/5053798.html EM框架是一种求解最大似然概率估计的方法.往往用在存在隐藏变量的问题上.我这里特意用"框架"来称呼它,是因为EM算法不像一些常见的机器学习算法例如logistic regression, decision tree,只要把数据的输入输出格式固定了,直接调用工具包就可以使用.可以概括为一个两步骤的框架: E-step:估计隐藏变量的概率分布期望…
首先,逻辑回归是一个概率模型,不管x取什么值,最后模型的输出也是固定在(0,1)之间,这样就可以代表x取某个值时y是1的概率 这里边的参数就是θ,我们估计参数的时候常用的就是极大似然估计,为什么呢?可以这么考虑 比如有n个x,xi对应yi=1的概率是pi,yi=0的概率是1-pi,当参数θ取什么值最合适呢,可以考虑 n个x中对应k个1,和(n-k)个0(这里k个取1的样本是确定的,这里就假设前k个是1,后边的是0.平时训练模型拿到的样本也是确定的,如果不确定还要排列组合) 则(p1*p2*...…