2017高教杯数学建模B 题分析】的更多相关文章

B题原文 "拍照赚钱"是移动互联网下的一种自助式服务模式.用户下载APP,注册成为APP的会员,然后从APP上领取需要拍照的任务(比如上超市去检查某种商品的上架情况),赚取APP对任务所标定的酬金.这种基于移动互联网的自助式劳务众包平台,为企业提供各种商业检查和信息搜集,相比传统的市场调查方式可以大大节省调查成本,而且有效地保证了调查数据真实性,缩短了调查的周期.因此APP成为该平台运行的核心,而APP中的任务定价又是其核心要素.如果定价不合理,有的任务就会无人问津,而导致商品检查的失…
好久好久没有写博客了...挺累的,从二月份开始找暑期实习,接着在进行暑期实习,然后马不停蹄地进行秋招,现在总算结束实习,前两天又参加了华为杯数学建模竞赛,感觉接下来就会很轻松了,希望能好好休息休息.这次的比赛还是挺简单的,比起以前参加社会性质的比赛不同,这次不管是从题目还是从要求上都简单几个档次. 1. 数据清洗 2.降维 3.模型训练 4.优化 5.画图 6.结论 1. 数据清洗 说实话,我是挺费解的,看到论坛上好多人都在骂B题数据不对,数据质量差,其实来说,数据整体还算不错,只有几列问题比较…
一直都想参加下数学建模,通过几个月培训学到一些好的数学思想和方法,今年终于有时间有机会有队友一起参加了研究生数模,but,为啥今年说不培训直接参加国赛,泪目~_~~,然后比赛前也基本没看,直接硬刚.比赛完总结下是个好习惯,下面写了一点分析,比较注重实现,有些地方我也不能讲很清楚,看过的请权当参考. 问题1:对一个不包含动态背景.摄像头稳定拍摄时间大约5秒的监控视频,构造提取前景目标(如人.车.动物等)的数学模型,并对该模型设计有效的求解方法,从而实现类似图1的应用效果.(附件2提供了一些符合此类…
MATLAB 画区域作战图 clear load('output_path1.mat') k = 1:130; gplot(edge(k,k),loc(k,:),'c-') title('作战区域道路示意图')…
MTSP问题是指:有Ⅳ个城市,要求旅行商到达每个城市各一次,且仅一次,并[旦 1到起点,且要求旅行路线最短.而多旅行商问题M个旅行商从同一个城市(或多个城市)出发.分羽走一条旅路线,且总路程缀短.有关稻 P闻鼷的研究在现实『口 J题中有很大的使用价德.诸如:交通运输.臀道铺设.路线的选撵.计算机网络的拓扑设计.邮递员送信等,都可抽象成MTSP的问题.…
题目请自主上网获取. 分析下思路.第一问,不同时空的出租车的“供求匹配”程度. 也就是说要选取的数据要有时间和地理两个维度.实体对象是出租车.关键的问题就是地点怎么选? 选择的城市具备如下经济较发达,有大量数据可以研究,有一定“出行困难”(才有优化的必要)三点要求. 那么城市选了,具体地点呢?一般选有代表性的景区,车站,商业圈以及大学城. 接下来就要建模型了. 假设打车软件使用率为a..那么实际需求(x)=打车量(z)/打车软件使用率(a).  满意程度(y)=x/出租车供应量(c).t为等车时…
高温作业专用服装设计 摘 要 本文针对多层材料的高温作业服装的传热问题进行研究,综合考虑多种传热方式建立传热模型,并以此模型为基础解决了服装设计中各层材料最佳厚度的问题. 对于问题一,要求在热物性系数不足的情况下求热量分布,故需先求取所缺少的空气对流换热系数,于是求解问题的第一步是已知假人皮肤外侧的温度变化求对流换热系数的反问题.本文首先建立了一维热传导正问题模型,随后根据最小二乘法的思想,以左边界空气对流换热系数为决策变量,以可能的空气对流换热系数对应的假人皮肤外侧理论温度与测量温度之差的平方…
6x6的方格,沿着格子的边线剪开成两部分.要求这两部分的形状完全相同. 如图:p1.png, p2.png, p3.png 就是可行的分割法.    试计算:包括这3种分法在内,一共有多少种不同的分割方法.注意:旋转对称的属于同一种分割法. 请提交该整数,不要填写任何多余的内容或说明文字. 思路:从中间点搜索碰到边界答案就加1 然后值得注意的是每一次都要标记两个点 因为是对称搜索的 其次最后答案需要除4,因为题目中说要旋转对称的是同一种. #include<cstdio> #include&l…
X星球的高科技实验室中整齐地堆放着某批珍贵金属原料. 每块金属原料的外形.尺寸完全一致,但重量不同.金属材料被严格地堆放成金字塔形. 7 5 8 7 8 8 9 2 7 2 8 1 4 9 1 8 1 8 8 4 1 7 9 6 1 4 5 4 5 6 5 5 6 9 5 6 5 5 4 7 9 3 5 5 1 7 5 7 9 7 4 7 3 3 1 4 6 4 5 5 8 8 3 2 4 3 1 1 3 3 1 6 6 5 5 4 4 2 9 9 9 2 1 9 1 9 2 9 5 7 9 4…
model: sets: dmu/../:lambda; !决策单元; inw/../:s1; !投入变量集; outw/../:s2; !产出变量集; inv(inw, dmu):x; !投入数据; outv(outw, dmu):y; !产出数据; endsets data: n=?; !所评价的决策单元; x= 349.3313 0.63114 5.59091 6.30942 3.84352 0.50472 37.86518 !AZ; 1620.7 1.2335 17.19304 25.3…