Metropolis Hasting Algorithm: MH算法也是一种基于模拟的MCMC技术,一个非常重要的应用是从给定的概率分布中抽样.主要原理是构造了一个精妙的Markov链,使得该链的稳态 是你给定的概率密度.它的优点,不用多说,自然是能够对付数学形式复杂的概率密度.有人说,单维的MH算法配上Gibbs Sampler差点儿是“无敌”了. 今天试验的过程中发现,MH算法想用好也还不简单,里面的转移參数设定就不是非常好弄.即使用最简单的高斯漂移项,方差的确定也是个头疼的问题,须要不同问…