原文地址: https://blog.csdn.net/happyday_d/article/details/85267561 -------------------------------------------------------------------------------------------------------- Pytorch中的学习率调整:lr_scheduler,ReduceLROnPlateau torch.optim.lr_scheduler:该方法中提供了多种基…
参考:https://pytorch.org/docs/master/optim.html#how-to-adjust-learning-rate torch.optim.lr_scheduler提供了几种方法来根据迭代的数量来调整学习率 自己手动定义一个学习率衰减函数: def adjust_learning_rate(optimizer, epoch, lr): """Sets the learning rate to the initial LR decayed by…
[转载]PyTorch中permute的用法 来源:https://blog.csdn.net/york1996/article/details/81876886 permute(dims) 将tensor的维度换位. 参数:参数是一系列的整数,代表原来张量的维度.比如三维就有0,1,2这些dimension. 例: import torch import numpy as np a=np.array([[[1,2,3],[4,5,6]]]) unpermuted=torch.tensor(a)…
[转载]Pytorch中nn.Linear module的理解 本文转载并援引全文纯粹是为了构建和分类自己的知识,方便自己未来的查找,没啥其他意思. 这个模块要实现的公式是:y=xAT+*b 来源:https://blog.csdn.net/u012936765/article/details/52671156 Linear 是module的子类,是参数化module的一种,与其名称一样,表示着一种线性变换. 创建 parent 的init函数 Linear的创建需要两个参数,inputSize…
通常为了模型能更好的收敛,随着训练的进行,希望能够减小学习率,以使得模型能够更好地收敛,找到loss最低的那个点. tensorflow中提供了多种学习率的调整方式.在https://www.tensorflow.org/api_docs/python/tf/compat/v1/train搜索decay.可以看到有多种学习率的衰减策略. cosine_decay exponential_decay inverse_time_decay linear_cosine_decay natural_ex…
原文地址: https://blog.csdn.net/shanglianlm/article/details/85143614 -------------------------------------------------------------------------------- PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 a. 有序调整:等间隔调整(Step),按需调整学习率(Mult…
PyTorch学习率调整策略通过torch.optim.lr_scheduler接口实现.PyTorch提供的学习率调整策略分为三大类,分别是 有序调整:等间隔调整(Step),按需调整学习率(MultiStep),指数衰减调整(Exponential)和 余弦退火CosineAnnealing. 自适应调整:自适应调整学习率 ReduceLROnPlateau. 自定义调整:自定义调整学习率 LambdaLR. 等间隔调整学习率 StepLR 等间隔调整学习率,调整倍数为 gamma 倍,调整…
有的时候需要我们通过一定机制来调整学习率,这个时候可以借助于torch.optim.lr_scheduler类来进行调整:一般地有下面两种调整策略:(通过两个例子来展示一下) 两种机制:LambdaLR机制和StepLR机制: (1)LambdaLR机制: optimizer_G = torch.optim.Adam([{'params' : optimizer_G.parameters() , 'initial_lr' : train_opt.lr}] , lr = train_opt.lr…
原文地址: https://blog.csdn.net/weixin_40100431/article/details/84311430 ------------------------------------------------------------------------------------------------ 当网络的评价指标不在提升的时候,可以通过降低网络的学习率来提高网络性能.所使用的类 class torch.optim.lr_scheduler.ReduceLROnP…
学习率的调整会对网络模型的训练造成巨大的影响,本文总结了pytorch自带的学习率调整函数,以及其使用方法. 设置网络固定学习率 设置固定学习率的方法有两种,第一种是直接设置一些学习率,网络从头到尾都使用这个学习率,一个例子如下: optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) 第二种方法是,可以针对不同的参数设置不同的学习率,设置方法如下:这里给subnet2子结构设置的学习率为0.01 ,如果对某…