44、NLP的其他分词功能测试】的更多相关文章

1. 命名实体识别功能测试 @Test public void testNer(){ if (NER.create("ltp_data/ner.model")<0) { System.err.println("load failed"); return; } List<String> words = new ArrayList<String>(); List<String> tags = new ArrayList<S…
文章摘自github,本次测试选用 HanLP 1.6.0 , LTP 3.4.0 测试思路 使用同一份语料训练两个分词库,同一份测试数据测试两个分词库的性能. 语料库选取1998年01月的人民日报语料库.199801人民日报语料 该词库带有词性标注,为了遵循LTP的训练数据集格式,需要处理掉词性标注. 测试数据选择SIGHan2005提供的开放测试集. SIGHan2005的使用可以参见其附带的readme. HanLP java -cp libs/hanlp-1.6.0.jar com.ha…
实现文本分词+在线词云实现工具 词云是NLP中比较简单而且效果较好的一种表达方式,说到可视化,R语言当仍不让,可见R语言︱文本挖掘——词云wordcloud2包 当然用代码写词云还是比较费劲的,网上也有一些成型的软件供大家使用. 本节转载于金砖咖啡馆公众号 我们词云制作工具是目前非常流行的tagxedo,tagxedo对于英文的分词做的很好(废话,英文单词之间有空格),但是对于中文分词做的不好,于是我们需要用到另外一个在线工具http://life.chacuo.net/convertexpor…
分词算法设计中的几个基本原则: 1.颗粒度越大越好:用于进行语义分析的文本分词,要求分词结果的颗粒度越大,即单词的字数越多,所能表示的含义越确切,如:“公安局长”可以分为“公安 局长”.“公安局 长”.“公安局长”都算对,但是要用于语义分析,则“公安局长”的分词结果最好(当然前提是所使用的词典中有这个词) 2.切分结果中非词典词越少越好,单字字典词数越少越好,这里的“非词典词”就是不包含在词典中的单字,而“单字字典词”指的是可以独立运用的单字,如“的”.“了”.“和”.“你”.“我”.“他”.例…
上文已经介绍了基于词典的中文分词,现在让我们来看一下基于统计的中文分词. 统计分词: 统计分词的主要思想是把每个词看做是由字组成的,如果相连的字在不同文本中出现的次数越多,就证明这段相连的字很有可能就是一个词. 统计分词一般做如下两步操作: 1.建立统计语言模型(n-gram) 2.对句子进行单词划分,然后对划分结果做概率计算,获取概率最大的分词方式.这里就用到了统计学习算法,如隐马尔科夫模型(HMM),条件随机场(CRF)等 语言模型: 语言模型在信息检索,机器翻译,语音识别中承担着重要的任务…
中文分词概述 词是最小的能够独立活动的有意义的语言成分,一般分词是自然语言处理的第一项核心技术.英文中每个句子都将词用空格或标点符号分隔开来,而在中文中很难对词的边界进行界定,难以将词划分出来.在汉语中,虽然是以字为最小单位,但是一篇文章的语义表达却仍然是以词来划分的.因此处理中文文本时,需要进行分词处理,将句子转为词的表示,这就是中文分词. 中文分词的三个难题: 分词规则,消除歧义和未登录词识别. 构建完美的分词规则便可以将所有的句子正确的划分,但是这根本无法实现,语言是长期发展自然而然形成的…
一.中文分词 词是最小的能够独立活动的有意义的语言成分,英文单词之间是以空格作为自然分界符的,而汉语是以字为基本的书写单位,词语之间没有明显的区分标记,因此,中文词语分析是中文信息处理的基础与关键. Lucene中对中文的处理是基于自动切分的单字切分,或者二元切分.除此之外,还有最大切分(包括向前.向后.以及前后相结合).最少切分.全切分等等. 二. 中文分词技术分类 我们讨论的分词算法可分为三大类: 1.基于词典:基于字典.词库匹配的分词方法:(字符串匹配.机械分词法) 2.基于统计:基于词频…
1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以人类自然语言为载体的文本所包含的信息,并完成一些特定任务 内容中文分词.词性标注.命名实体识别.关系抽取.关键词提取.信息抽取.依存分析.词嵌入…… 应用篇章理解.文本摘要.情感分析.知识图谱.文本翻译.问答系统.聊天机器人…… 2. NLP 使用jieba分词处理文本,中文分词,关键词提取,词性标…
1.首先需要构建自然语言处理的LTP的框架 (1)需要下载LTP的源码包即c++程序(https://github.com/HIT-SCIR/ltp)下载完解压缩之后的文件为ltp-master (2)需要下载LTP4j的封装包(https://github.com/HIT-SCIR/ltp4j),下载完解压缩之后的文件为ltp4j-master (3)需要下载cmake并且安装 (4)需要下载ant用来编译LTP4j,将LTP4j文件编译成ltp.jar文件,最后在myeclipse中引用它…
nlp词性标注 与分词函数不同,jieba库和pyltp库词性标注函数上形式相差极大. jieba的词性标注函数与分词函数相近,jieba.posseg.cut(sentence,HMM=True)函数有两个参数,sentence是一段文本. pyltp的词性标注函数pyltp.Postagger.postag(words)有一个参数,words是分词模块的返回值,或者是Python原生的list类型. nltk中的词性标注函数与pyltp的相似,也是输入list类型.nltk.pos_tag(…
自然语言处理是一门用于理解人类语言.情感和思想的技术,被称为是人工智能皇冠上的明珠. 随着深度学习发展,自然语言处理技术近年来发展迅速,在技术上表现为BERT.GPT等表现极佳的模型:在应用中表现为chatbot.知识图谱.舆情监控等基于NLP技术的产品在市场上的大规模出现. 基于此,各类公司开始出现NLP算法工程师的需求,待遇在软件工程师岗位中处于相当上游的水平. 基于此,不少同学和工程师有学习NLP的愿望,本文对首先NLP做一个简单的介绍:然后,作为一个过来人,为初学NLP的同学提供一些必要…
“自然语言处理”(Natural Language Processing 简称 NLP)包含所有用计算机对自然语言进行的操作. 自然语言工具包(NLTK) 语言处理任务与相应 NLTK 模块以及功能描述 NLTK 频率分布类中定义的函数 示例:简单的语音对话系统的流程架构: 分析语音输入(左上),识别单词,文法分析和在 上下文中解释,应用相关的具体操作(右上);响应规划,实现文法结构,然后是适当的词 形变化,最后到语音输出:处理的每个过程都蕴含不同类型的语言学知识 在自然语言处理的实际项目中,通…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
AIOps 人工智能和IT运营支撑 Ops 之间的故事,愈演愈烈,已经成为当今运维圈的热门话题,我打算从2篇文档分享我们在 AIOps 上一些探索和实践.(上篇)主要介绍了为什么事件(告警)处理需要 AIOps:(本篇)主要分享OneAlert 事件处理平台在 AIOps 方面的探索. 上篇提到规模化的 IT 事件管理中,需要人工智能识别重要信息,去除噪音,甄别关键信息,减少人力工作量. 举个栗子:假设某企业的 IT 环境中的某个底层基础设施,如网络或存储设备出现异常,相关联的主机.中间件数据库…
# 前提是必须安装: python -m spacy download ennlp = spacy.load('en')text = u"you are best. it is lemmatize test for spacy. I love these books. amines (when protonated)"doc = nlp(text)# 观察分词token = [t for t in doc]# 分词我们就用这个orth_ 可以识别标点符号token2 = [token.…
原文:http://developer.51cto.com/art/201501/464174.htm 编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning i…
之所以研究这个算法,是因为最近在研究NLP中文的分词,所谓分词就是将一个完整的句子,例如“计算语言学课程有意思”,分解成一些词组单元“计算语言学,课程,有,意思”. “最大匹配法” 在中文分词中有所应用,因此这里介绍一下. “最大匹配法” 分为正向匹配和逆向匹配,这里先看正向匹配. 算法思想: 正向最大匹配算法:从左到右将待分词文本中的几个连续字符与词表匹配,如果匹配上,则切分出一个词.但这里有一个问题:要做到最大匹配,并不是第一次匹配到就可以切分的 .我们来举个例子: 待分词文本: sente…
转载:http://dataunion.org/8463.html?utm_source=tuicool&utm_medium=referral <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.而且原文也会不定期的更新,望看到文章的朋友能够学到更多. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Ju…
感谢:https://github.com/ty4z2008/Qix/blob/master/dl.md <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室 Jurgen Schmidhuber…
HMM用于自然语言处理(NLP)中文分词,是用来描述一个含有隐含未知参数的马尔可夫过程,其目的是希望通过求解这些隐含的参数来进行实体识别,说简单些也就是起到词语粘合的作用. HMM隐马尔可夫模型包括: OBS 显现层(observations) States 隐含层 Start_p 初始概率 P(a) Trans_p 转移概率 P(b|a) Emit_p 发射概率 例题:小黑每天根据天气[下雨.晴天]决定当天的活动[散步.购物.清理房间],她有在朋友圈里发了一条信息“我前天在公园散步,昨天购物,…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室…
自学成才秘籍!机器学习&深度学习经典资料汇总 转自:中国大数据: http://www.thebigdata.cn/JiShuBoKe/13299.html [日期:2015-01-27] 来源:亚马逊  作者: [字体:大 中 小] 小编都深深的震惊了,到底是谁那么好整理了那么多干货性的书籍.小编对此人表示崇高的敬意,小编不是文章的生产者,只是文章的搬运工. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…
笔记转载于GitHub项目:https://github.com/NLP-LOVE/Introduction-NLP 13. 深度学习与自然语言处理 13.1 传统方法的局限 前面已经讲过了隐马尔可夫模型.感知机.条件随机场.朴素贝叶斯模型.支持向量机等传统机器学习模型,同时,为了将这些机器学习模型应用于 NLP,我们掌握了特征模板.TF-IDF.词袋向量等特征提取方法.而这些方法的局限性表现为如下: 数据稀疏 首先,传统的机器学习方法不善于处理数据稀疏问题,这在自然语言处理领域显得尤为突出,语…
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebos.com/cips2016.pdf 之前写过一篇中文分词总结,那么在那篇基础上,通过在CIPS2016的摘录进行一些拓展.可参考上篇:NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与比较 NLP词法.句法.语义.语篇综合系列: NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与…
笔者想说:觉得英文与中文分词有很大的区别,毕竟中文的表达方式跟英语有很大区别,而且语言组合形式丰富,如果把国外的内容强行搬过来用,不一样是最好的.所以这边看到有几家大牛都在中文分词以及NLP上越走越远.哈工大以及北大的张华平教授(NLPIR)的研究成果非常棒! 次,全球用户突破30万.(博客中科院分词系统整理笔记) <大数据搜索与挖掘>张华平:在线看书网址 4.bostonNLP 玻森采用的结构化预测分词模型是传统线性条件随机场(Linear-chain CRF)的一个变种. 分词与词性标注中…
已迁移到我新博客,阅读体验更佳seg:NLP之正向最大匹配分词 完整代码实现放在我的github上:click me 一.任务要求 实现一个基于词典与规则的汉语自动分词系统. 二.技术路线 采用正向最大匹配(FMM)方法对输入的中文语句进行分词,具体的实现可以分为下面几个步骤: 对输入的一个中文语句,首先在程序中判断并确保语句中不包含数字或者字母 在句子中的当前位置开始取与词典dic_ce.txt中最大匹配长度的词作为一个分词段,如果没有在词典中成功匹配到就将句子在当前匹配位置的这个字作为一个分…