SURF算子(1)】的更多相关文章

SURF算子,参考这篇文章的解释http://www.ipol.im/pub/art/2015/69/ SURF 是   Speeded Up Robust Features 加速鲁棒特征的含义. The source code and the online demo are accessible at the IPOL web page of this article1. Theproposed implementation of the SURF algorithm is written i…
Opencv中Surf算子提取特征,生成特征描述子,匹配特征的流程跟Sift是完全一致的,这里主要介绍一下整个过程中需要使用到的主要的几个Opencv方法. 1. 特征提取 特征提取使用SurfFeatureDetector类中的detect方法,先定义一个SurfFeatureDetector类的对象,通过对象调用detect方法就可以提取输入图像的Surf特征.可以使用不带参数的默认构造函数构建SurfFeatureDetector对象,也可以使用含参数的构造函数: CV_WRAP SURF…
Surf算法是一把牛刀,我们可以很轻易的从网上或各种Opencv教程里找到Surf的用例,把例程中的代码或贴或敲过来,满心期待的按下F5,当屏幕终于被满屏花花绿绿的小圆点或者N多道连接线条霸占时,内心的民族自豪感油然而生,仿佛屠龙宝刀在手,屁颠屁颠的很开心. 如果对Surf的探究或者使用到此为止,我觉得只是用Surf这把牛刀吓唬了一个小鸡仔,万里长征才刚刚开始第一步,最少有三个问题需要得到解答: 1. 保存特征点信息的keyPoints向量内每个元素包含有哪些内容? 2. 通过comput方法生…
本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中.我们一起探讨了Ope…
图像识别.人脸识别可行的算法有很多.但是作为学习,如果能理清这个问题研究的历程及其主线,会对你深入理解当前研究最新的发展有很多帮助.本文是自己在学习过程中的笔记,大多内容来自于网络,出处请参考最后的引文部分. Sift算法 Sift算法是David Lowe于1999年提出的局部特征描述子,并于2004年进行了更深入的发展和完善.Sift特征匹配算法可以处理两幅图像之间发生平移.旋转.仿射变换情况下的匹配问题,具有很强的匹配能力.总体来说,Sift算子具有以下特性: Sift特征是图像的局部特征…
上一节我们已经介绍了SIFT算法,SIFT算法对旋转.尺度缩放.亮度变化等保持不变性,对视角变换.仿射变化.噪声也保持一定程度的稳定性,是一种非常优秀的局部特征描述算法.但是其实时性相对不高. SURF(Speeded Up Robust Features)算法改进了特征了提取和描述方式,用一种更为高效的方式完成特征点的提取和描述. 一 使用快速Hessian算法和SURF来提取和检测特征 我们先用OpenCV库函数演示一下快速Hessian算法和SURF来提取的效果,然后再来讲述一下SURF算…
SURF原理详解:https://wenku.baidu.com/view/2f1e4d8ef705cc1754270945.html SURF算法工作原理 选择图像中的POI(Points of interest) Hessian Matrix 在不同的尺度空间发现关键点,非最大信号压制 发现特征点方法.旋转不变性要求 生成特征向量 SURF构造函数介绍 C++:  SURF::SURF( double hessianThreshold, --阈值检测器使用Hessian的关键点,默认值在 3…
本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)    微博:http://weibo.com/u/1723155442 知乎:http://www.zhihu.com/people/mao-xing-yun 邮箱: happylifemxy@163.com 写作当前博文时配套使用的OpenCV版本号: 2.4.9 本篇文章中,我们一起探讨了Ope…
1999年的SIFT(ICCV 1999,并改进发表于IJCV 2004,本文描述):参考描述:图像特征点描述. 参考原文:SURF特征提取分析 本文有大量删除,如有疑义,请参考原文. SURF对SIFT的改进: 引用Wiki百科中对SURF描述为:"SURF (Speeded Up Robust Features) is a robust local feature detector, first presented by Herbert Bay et al. in 2006, that ca…
识别算法概述: SIFT/SURF基于灰度图, 一.首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变. 二.在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方向:而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变…
这几天学习SURF特征检测,直接看的视频和书本有点吃不消,现在是基本看懂了,如果写博客记录没有必要,因为网上都差不多,笔记都在书上了,以下是个人认为比较浅显易懂的文章,当然海有很多好文章我没看到. 看第一篇入门就可以,后面讲的不是很好: http://blog.csdn.net/jwh_bupt/article/details/7621681 harris:    http://www.cnblogs.com/ronny/p/4009425.html Harr:  http://blog.csd…
opencv中的SVM图像分类(二) 标签: svm图像 2015-07-30 08:45 8296人阅读 评论(35) 收藏 举报  分类: [opencv应用](5)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   原创作品 转载请注明出http://blog.csdn.net/always2015/article/details/47107129 上一篇博文对图像分类理论部分做了比较详细的讲解,这一篇主要是对图像分类代码的实现进行分析.理论部分我们谈到了使…
基于古老的Marr视觉理论,视觉识别和场景重建的基础即第一阶段为局部显著性探测.探测到的主要特征为直觉上可刺激底层视觉的局部显著性--特征点.特征线.特征块. SalientDetection 已经好就没有复习过了,DNN在识别领域的超常表现在各个公司得到快速应用,在ML上耗了太多时间,求职时被CV的知识点虐死... 点探测总结(SIft.PCA-SIft.Surf.GLOH.Brief.Brisk.ORB.Freak) 特征点寻找的准则之一是算法的通用准则-泛化性能,即在一个场景中中适用,在另…
Abstract: 本文提出一种用于大规模的长期回环检测,基于一种内存管理方法:限制用于回环检测的位置数目,以满足实时性要求. introduction: 大场景存在的最关键问题:随着场景增大,回环检测处理的数据量增大,可能会产生延时.该论文的研究重心在于设计一种在线的基于外观回环检测方法.为了限制搜索之前经过位置的时间,在贝叶斯框架下采用动态管理用于闭环检测的位置.Working Memory的大小取决于需要处理实时获得图片的时间,保留最近且最常观测到的位置,将其他的位置放入Long Term…
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_eWeRu9p9GhZd49WJ1bEOB7VluQdBdRKeehAO2Q3B7RatTXDruq-M9cR-W2yqATerDlIU1T3whYoyQfi http://www.cvchina.info/2011/07/04/whats-orb/ http://www.bubuko.com/in…
Surf特征提取分析 Surf Hessian SIFT 读"H.Bay, T. Tuytelaars, L. V. Gool, SURF:Speed Up Robust Features[J],ECCV,2006"笔记 SURF:Speed Up Robust Features,加速鲁棒特征. 我觉得SURF是SIFT特征的一种近似计算,在相似性能甚至更好性能的同时提高了算法的速度.这些近似体现在 在尺度空间中,使用box filtes与原图像卷积,而不是使用DoG算子 确定关键点方…
Surf(Speed Up Robust Feature) Surf算法的原理                                                                            1.构建Hessian矩阵构造高斯金字塔尺度空间 其实surf构造的金字塔图像与sift有很大不同,就是因为这些不同才加快了其检测的速度.Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方便运…
推荐:http://www.cnblogs.com/tornadomeet/archive/2012/08/17/2644903.html SURF-Speeded Up Robust Features 是对SIFT的增强 与SIFT的不同之处: 1.DoH近似-Determinant of Hessian 也就是使用每个像素Hessian矩阵的行列式的近似值构成! 而SIFT使用原图构造的DoG图来寻找关键点! 2.高斯模糊 SIFT与SURF都要首先对原图像进行高斯模糊来构造尺度空间: SI…
Surf(Speed Up Robust Feature) Surf算法的原理                                                                            1.构建Hessian矩阵构造高斯金字塔尺度空间 其实surf构造的金字塔图像与sift有很大不同,就是因为这些不同才加快了其检测的速度.Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方便运…
Surf(Speed Up Robust Feature) Surf算法的原理                                                                           1.构建Hessian矩阵构造高斯金字塔尺度空间 其实surf构造的金字塔图像与sift有很大不同,就是因为这些不同才加快了其检测的速度.Sift采用的是DOG图像,而surf采用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方便运算…
※注:参数SURF中的hessian阈值是图像Hessian矩阵判别式的阈值,值越大检测出的特征点就越少,也就意味着特征点越稳定 #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" #include "opencv2/nonfree/nonfree.hpp&…
http://blog.csdn.net/cy513/article/details/4414352 SURF算法是SIFT算法的加速版,OpenCV的SURF算法在适中的条件下完成两幅图像中物体的匹配基本实现了实时处理,其快速的基础实际上只有一个——积分图像haar求导,对于它们其他方面的不同可以参考本blog的另外一篇关于SIFT的文章. 不论科研还是应用上都希望可以和人类的视觉一样通过程序自动找出两幅图像里面相同的景物,并且建立它们之间的对应,前几年才被提出的SIFT(尺度不变特征)算法提…
原文地址:http://www.sohu.com/a/157742015_715754 SURF: Speeded Up Robust Features 摘要 本文提出了一种新型的具有尺度和旋转不变特性的兴趣点检测和描述方法,简称为SURF(Speeded Up Robust Features).在可重复性.独特性和鲁棒性方面,与前人提出的方法相比,该方法性能接近甚至更好,但其计算和匹配的速度更快. 该方法得以实现,是依赖于用积分图像来计算图像卷积,建立在现有的先进检测和描述算子(基于Hessi…
依旧转载自作者:tornadomeet 出处:http://www.cnblogs.com/tornadomeet 特征点检测学习_2(surf算法) 在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了…
0.特征与匹配方法总结汇总对比 参考网址:http://simtalk.cn/2017/08/18/%E7%89%B9%E5%BE%81%E4%B8%8E%E5%8C%B9%E9%85%8D/#ORB (1)ORB:ORB特点就是计算速度快.节约了存储空间,但是它算法的质量较差而且没有解决尺度一致性问题 (2) Harris:具有平移不变,旋转不变,能克服一定光照变化的特质. 缺点:该算法不具有尺度不变性:该算法提取的角点是像素级的:该算法检测时间不是很令人满意. (3) SIFT尺度不变特征变…
在上篇博客特征点检测学习_1(sift算法) 中简单介绍了经典的sift算法,sift算法比较稳定,检测到的特征点也比较多,其最大的确定是计算复杂度较高.后面有不少学者对其进行了改进,其中比较出名的就是本文要介绍的surf算法,surf的中文意思为快速鲁棒特征.本文不是专门介绍surf所有理论(最好的理论是作者的论文)的,只是对surf算法进行了下整理,方便以后查阅. 网上有些文章对surf做了介绍,比如: http://wuzizhang.blog.163.com/blog/static/78…
Surf(Speed Up Robust Feature) Surf算法的原理                                                                           1.构建Hessian矩阵构造高斯金字塔尺度空间 事实上surf构造的金字塔图像与sift有非常大不同,就是由于这些不同才加快了其检測的速度. Sift採用的是DOG图像.而surf採用的是Hessian矩阵行列式近似值图像.Hessian矩阵是Surf算法的核心,为了方…
学习OpenCV--Surf(特征点篇)&flann 分类: OpenCV特征篇计算机视觉 2012-04-20 21:55 19887人阅读评论(20)收藏举报 检测特征 Surf(Speed Up Robust Feature) Surf算法的原理                                                                           1.构建Hessian矩阵构造高斯金字塔尺度空间 其实surf构造的金字塔图像与sift有很大不同…
Speeded Up Robust Features(SURF,加速稳健特征),是一种稳健的局部特征点检测和描述算法.最初由Herbert Bay发表在2006年的欧洲计算机视觉国际会议(Europen Conference on Computer Vision,ECCV)上,并在2008年正式发表在Computer Vision and Image Understanding期刊上. Surf是对David Lowe在1999年提出的Sift算法的改进,提升了算法的执行效率,为算法在实时计算机…
目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift sift特征简介 SIFT(Scale-Invariant Feature Transform)特征,即尺度不变特征变换,是一种计算机视觉的特征提取算法,用来侦测与描述图像中的局部性特征. 实质上,它是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出.…