BZOJ4668 冷战(LCT维护最小生成树)】的更多相关文章

BZOJ4668 冷战(LCT维护最小生成树) 题面 自己找去 HINT 这道题就是动态加边,然后查询u,v两点最早什么时候联通,强制在线.思考一下,最早什么时候联通不就等同于维护最小生成树吗(把这条边加入的时间视为边权),然后就动态维护一下最小生成树,有个小细节,如果两点不连通,lastans要更新成0,被这个坑了 tips 出题人其实是想放带权并查集过的,所以数据范围是\(5e5\),如果把数据下载下来测是没法1s过大的点的,但是BZOJ是总时长,也就轻松AC了. #include<bits…
题目 SC省MY市有着庞大的地下水管网络,嘟嘟是MY市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从x处送往y处,嘟嘟需要为供水公司找到一条从A至B的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了.嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项. 在处理每项送水任务之前,路径上的水管都要进行一系列的准备操作,如清洗.消毒等等.嘟嘟在控制中心一声令下,…
题面 一开始看到这道题虽然知道是跟LCT维护最小生成树相关的但是没有可以的去想. 感觉可以先二分一下总的精灵数,但是感觉不太好做. 又感觉可以只二分一种精灵,用最小生成树算另一种精灵,但是和似乎不单调. 然后就可以自然地想到先把边按\(a\)从小到大加入,用LCT维护最小生成树,直接更新答案即可. #include<cstdio> #include<algorithm> #include<cmath> #include<cstring> #define RE…
\(\color{#0066ff}{ 题目描述 }\) SC 省 MY 市有着庞大的地下水管网络,嘟嘟是 MY 市的水管局长(就是管水管的啦),嘟嘟作为水管局长的工作就是:每天供水公司可能要将一定量的水从 xx 处送往 yy 处,嘟嘟需要为供水公司找到一条从 AA 至 BB 的水管的路径,接着通过信息化的控制中心通知路径上的水管进入准备送水状态,等到路径上每一条水管都准备好了,供水公司就可以开始送水了.嘟嘟一次只能处理一项送水任务,等到当前的送水任务完成了,才能处理下一项. 在处理每项送水任务之…
本题是运用LCT来维护一个最小生成树. 是一个经典的套路 题目中求的是一个\(max(a_i)+max(b_i)\)尽可能小的路径. 那么这种的一个套路就是,先按照一维来排序,然后用LCT维护另一维 那么这个对于这个题来说,我们考虑,可以先按照a从小到大排序,然后顺次加入每条边,这样每次加入的边一定是有可能会更新到\(ans\)的. 对于一条边\(u->v\),如果\(u\)和\(v\)不在一个联通块里面的话,那么就直接连上这个边,然后尝试更新答案 如果在同一个联通块里面呢,我们就判断\(u\)…
\(\color{#0066ff}{ 题目描述 }\) 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,-,n,边标号为 1,2,3,-,m.初始时小 E 同学在 1 号节点,隐士则住在 n 号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击.幸运的是,在 1 号节点住着两种守护精灵:A 型守护精…
大概题意:给一个无向图,有a,b两种边权,找一条从1到n的路径,使得max(a[i])+max(b[i])最小a[i],b[i]表示该路径上的边的对应权. 如果用类似最短路的DP来做,显然每个点的状态就必须是一个集合,保存的是一个下凸的点集,表示到达这个点的最小的a,b,这样肯定会挂,但该该种做法已经无法再优化或减少状态了. 考虑枚举其中一个权值b0,然后只考虑所有b权值小于等于b0的边,然后变成简单的问题,因为这个b0不满足二分三分之类的性质,所以肯定不能每次重建图,跑DP,最终的做法是从小到…
题目描述 为了得到书法大家的真传,小 E 同学下定决心去拜访住在魔法森林中的隐 士.魔法森林可以被看成一个包含 n 个节点 m 条边的无向图,节点标号为 1,2,3,…,n,边标号为 1,2,3,…,m.初始时小 E 同学在 1 号节点,隐士则住在 n 号节点.小 E 需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪 就会对其发起攻击.幸运的是,在 1 号节点住着两种守护精灵:A 型守护精灵与 B 型守护精灵.小 E 可以借助它们的力…
为了得到书法大家的真传,小E同学下定决心去拜访住在魔法森林中的隐士.魔法森林可以被看成一个包含个N节点M条边的无向图,节点标号为1..N,边标号为1..M.初始时小E同学在号节点1,隐士则住在号节点N.小E需要通过这一片魔法森林,才能够拜访到隐士. 魔法森林中居住了一些妖怪.每当有人经过一条边的时候,这条边上的妖怪就会对其发起攻击.幸运的是,在号节点住着两种守护精灵:A型守护精灵与B型守护精灵.小E可以借助它们的力量,达到自己的目的. 只要小E带上足够多的守护精灵,妖怪们就不会发起攻击了.具体来…
离线做,把删边转化为加边,那么如果加边的两个点不连通,直接连就行了.如果联通就找他们之间的瓶颈边,判断一下当前边是否更优,如果更优就cut掉瓶颈边,加上当前边. 那怎么维护瓶颈边呢?把边也看做点,向两个点分别连边,那么只用维护最大值就行了.维护的时候保存编号,比较的时候就比较编号对应的边权,这样方便询问时删边. 还有读入后注意储存 边(u,v)或者断边(u,v) 的时候,把较小值设为u,较大值设为v. 如果不这样的话在BZOJ上能A,但是在洛谷上会WA,因为BZOJ上的数据保证前面给出的边(u,…
这个题和魔法森林感觉有很相近的地方啊 同样也是维护一个类似最大边权最小的生成树 但是不同的是,这个题是有\(cut\)和询问,两种操作.... 这可如何是好啊? 我们不妨倒着来考虑,假设所有要\(cut\)的边全都不存在,倒序做这个问题,不就是相当于在支持\(link\)操作吗? 那么就和之前的问题大致上是一样的了 对于\(u->v\) 如果\(findroot(u)!=findroot(v)\),就直接连边. 如果\(findroot(u)==findroot(v)\),就判断原来两个点之间的…
Description 1946 年 3 月 5 日,英国前首相温斯顿·丘吉尔在美国富尔顿发表"铁幕演说",正式拉开了冷战序幕. 美国和苏联同为世界上的"超级大国",为了争夺世界霸权,两国及其盟国展开了数十年的斗争.在这段时期,虽然分歧和冲突严重,但双方都尽力避免世界范围的大规模战争(第三次世界大战)爆发,其对抗通常通过局部代理战争.科技和军备竞赛.太空竞争.外交竞争等"冷"方式进行,即"相互遏制,不动武力",因此称之为&qu…
题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:带权无向图,每条边有权值\(a[i],b[i]\).要求一条从\(1\)到\(N\)的路径,使得这条路径上的\(Max\{a[i]\}+Max\{b[i]\}\)最小 解题思路 \(LCT\)板子打错调试了半个小时--菜到不能再菜了-- 首先我们发现题目要求不是最小的和,而是最小的\(Max\{a[i]\}+Max\{b[i]\}\)--都只取决于最大.因此我们可以联想,如果\(Max\{a\}\)确定了,那么余下的就是用…
题目类型:\(LCT\)动态维护最小生成树 传送门:>Here< 题意:给出一张简单无向图,要求找到两点间的一条路径,使其最长边最小.同时有删边操作 解题思路 两点间路径的最长边最小,也就是等同于要求最小生成树.因此如果没有删边操作,那么只要\(Kruscal\)一遍就好了. 然而现在需要删边,也就是意味着最小生成树需要不停地重构--那怎么维护呢? 考虑离线,倒着处理所有的删边.于是乎就成为了一条一条加边.这就是标准的\(LCT\)动态维护最小生成树了.具体方法就是:如果两个点不在同一颗树中,…
题目描述 给定一个标号为从 11 到 nn 的.有 mm 条边的无向图,求边权最大值与最小值的差值最小的生成树. 输入输出格式 输入格式:   第一行两个数 n, mn,m ,表示图的点和边的数量. 第二行起 mm 行,每行形如 u_i, v_i, w_iui​,vi​,wi​ ,代表 u_iui​ 到 v_ivi​ 间有一条长为 w_iwi​ 的无向边.   输出格式:   输出一行一个整数,代表你的答案. 数据保证存在至少一棵生成树.   输入输出样例 输入样例#1: 复制 4 6 1 2…
这道题看题意是在求一个二维最小瓶颈路,唯一可行方案就是枚举一维在这一维满足的条件下使另一维最小,那么我们就把第一维排序利用A小的边在A大的情况下仍成立来动态加边维护最小生成树. #include <cstdio> #include <algorithm> namespace Pre{ inline void read(int &sum){ register char ch=getchar(); ;ch<';ch=getchar()); )+(sum<<)+…
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3669 [题意] 给定一个无向图,求1-n的路径中最小的max{ai}+max{bi} [思路] 将边按照a排序.LCT维护关于b的最小生成树. 顺序枚举每条边u,v,如果u,v已经连接则比较u,v路径上的最大边与新边,否则直接相连. 如果1与n连通,则用e.a+max{e.b}更新ans.直观地看,最小生成树上的max{e.b}是1..i条边加入后能够得到的最小b. _max的初值赋…
BZOJ4668: 冷战 题意: 给定 n 个点的图.动态的往图中加边,并且询问某两个点最早什 么时候联通,强制在线. 还可以这样乱搞 并查集按秩合并的好处: 深度不会超过\(O(\log n)\) 树的结构保持较稳定 -> 虽说连边的时候依旧是祖先来连边,但连边不会改变原来的结构,并且(u,v)路径上会经过新连的边 于是就可以乱搞了 维护一个按秩合并的并查集,给连边操作加时间戳,查询的时候暴力求路径上时间戳最大值 PS:暴力lca也是需要deep PS2:按秩合并是看高度的吧,为什么我的好慢?…
洛谷题目传送门 思路分析 在一个图中,要求路径上最大边边权最小,就不难想到最小生成树.而题目中有删边的操作,那肯定是要动态维护啦.直接上LCT维护边权最小值(可以参考一下蒟蒻的Blog) 这时候令人头疼的问题又冒出来了......删掉一条边以后,又不好从树断开后的两边选出最小的边在连上.这是根本维护不了的. 于是蒟蒻又get到了一个新套路--顺序解决不了的问题,可以离线询问,反过来处理.原来的删边变成了加边,就很方便了.直接split找出环上的最大边,当前要加的边比它小就替换掉. 一个做法的问题…
题目链接 bzoj4668: 冷战 题解 按秩合并并查集,每次增长都是小集合倍数的两倍以上,层数不超过logn 查询路径最大值 LCT同解 代码 #include<bits/stdc++.h> using namespace std; inline int read() { int x = 0,f = 1; char c = getchar(); while(c < '0' || c > '9')c = getchar(); while(c <= '9' &&…
比较自然的思路是,由于需要记录连通块合并时的信息,所以需要建出Kruskal重构树. 需要用LCT维护,支持加点和在线LCA操作. 不妨考虑在并查集合并的同时记录信息,pre[x]表示x与它的父亲相连的时刻. 两个点连通的时刻,等于两个点之间路径上时刻的最大值. 注意到按秩合并但不路径压缩的并查集不改变树的结构,且树高为log,正好符合要求. $O(n\log n)$ #include<cstdio> #include<algorithm> #define rep(i,l,r) f…
显然可以用LCT维护kruskal重构树.或者启发式合并维护kruskal重构树的倍增数组虽然多了个log也不一定比LCT慢吧. 当然这里的kruskal重构树几乎只是把树上的边权换成了点权,并不重要. 我们要查询的是树上两点间路径边权最大值.显然要并查集按秩合并一波.然后……并查集的树高就是log啊?维护个鬼的倍增数组啊直接暴力啊? #include<iostream> #include<cstdio> #include<cmath> #include<cstd…
4764: 弹飞大爷 Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 101  Solved: 52[Submit][Status][Discuss] Description 自从WC退役以来,大爷是越来越懒惰了.为了帮助他活动筋骨,也是受到了弹飞绵羊一题的启发,机房的小伙伴们 决定齐心合力构造一个下面这样的序列.这个序列共有N项,每项都代表了一个小伙伴的力量值,如果大爷落到了 第i个小伙伴的手里,那么第i个小伙伴会把大爷弹到第i+ai个小伙伴手里…
题面 没有权限号的可以去LOJ Sol 大家都知道,\(LCT\)上有许多实边和虚边 实边就是每棵\(Splay\)上的既认父亲又认儿子的边 虚边就是\(Splay\)和\(Splay\)之间只认父亲的的边 那么每个点就有它的虚儿子和实儿子,实际上虚儿子才是它在\(LCT\)维护的树上的真正的儿子 当你\(Access(x)\)时,\(x\)的虚儿子加上它自己就是它子树的信息 所以我们要维护每个点虚儿子的信息和LCT子树的信息(也就是虚儿子+实儿子+自己) 怎么维护? 你会发现这只会在\(Acc…
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的询问. 输入 第一行包含两个整数N,Q,表示星球的…
题目描述 小强要在N个孤立的星球上建立起一套通信系统.这套通信系统就是连接N个点的一个树. 这个树的边是一条一条添加上去的.在某个时刻,一条边的负载就是它所在的当前能够 联通的树上路过它的简单路径的数量. 例如,在上图中,现在一共有了5条边.其中,(3,8)这条边的负载是6,因 为有六条简单路径2-3-8,2-3-8-7,3-8,3-8-7,4-3-8,4-3-8-7路过了(3,8). 现在,你的任务就是随着边的添加,动态的回答小强对于某些边的负载的 询问. 输入 第一行包含两个整数N,Q,表示…
题目:https://loj.ac/problem/121 离线,LCT维护删除时间最大生成树即可.注意没有被删的边的删除时间是 m+1 . 回收删掉的边的节点的话,空间就可以只开 n*2 了. #include<cstdio> #include<cstring> #include<algorithm> #include<map> #define mkp make_pair #define ls c[x][0] #define rs c[x][1] usin…
有些题目,在要求支持link-cut之外,还会在线询问某个子树的信息.LCT可以通过维护虚边信息完成这个操作. 对于LCT上每个节点,维护两个两sz和si,后者维护该点所有虚儿子的信息,前者维护该点的所有信息和. 那么显然有:$si[x]=\sum sz[pson]$,$sz[x]=sz[lson]+sz[rson]+si[x]+v[x]$. 其中pson是虚儿子,lson,rson是LCT上的实儿子,v是节点本身的信息. 那么,考虑在哪些操作下需要更新这两个值. 1.access  每次将旧虚…
题目描述 给出一棵树和一个点对集合S,多次改变这棵树的形态.在集合中加入或删除点对,或询问集合内的每组点对之间的路径是否都经过某条给定边. 输入 输入的第一行包含一个整数 id,表示测试数据编号,如第一组数据的id=1,样例数据的 id 可以忽略.输入的第二行包含两个整数 n,m,分别表示图中的点数,以及接下来会发生的事件数,事件的定义下文中会有描述.初始时 S 为空.接下来 n−1 行,每行两个正整数 x,y,表示点 x 和点 y 之间有一条无向边.接下来 m 行,每行描述一个事件,每行的第一…
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4530 LCT维护子树 siz .设 sm[ ] 表示轻儿子的 siz 和+1(1是自己的siz),siz[ ] 表示 splay 里 ( 两个儿子的 siz[ ] ) + sm[ cr ] .在 access 里随便维护一下就好了. 一开始写的 siz[ ]  是 splay 里右儿子的 siz[ ] + sm[ cr ] ,但打 rev[ ]  的时候难以维护,所以弃了. 注意要先让一个…