P3390矩阵快速幂】的更多相关文章

题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 //上板子! #include<iostre…
题目链接:https://www.luogu.org/problemnew/show/P3390 首先要明白矩阵乘法是什么 对于矩阵A m*p  与  B p*n 的矩阵 得到C m*n 的矩阵 矩阵乘法满足结合律,但不满足交换律(所以可以套快速幂的板子) 进行矩阵乘法时要么重载*号,或者是写一个矩阵相乘的函数 #include<algorithm> #include<iostream> #include<cstring> #include<cstdio>…
补一补之前的坑 因为上次关于矩阵的那篇blog写的内容太多太宽泛了,所以这次把一些板子和基本思路理一理 先看这道模板题:P3390 [模板]矩阵快速幂 首先我们知道矩阵乘法满足结合律而不满足交换律的一种运算 因此我们对于矩阵A的p次只需要先算出A^(p/2)即可 这不就是快速幂吗,快速幂的模板看这里 然后我们把其中的整数乘法改成矩阵乘法即可 关于矩阵的其他东西都不会,好吧,看一看概述矩阵 CODE #include<cstdio> #include<cstring> using n…
P3390 [模板]矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 矩阵A的大小为n×m,B的大小为n×k,设C=A×B 则\(C_{i,j}=\sum\limits_{k=1}^{n}A_{i,p}×B_{p,j}\) 矩阵乘满足结合律:(AB)C=A(BC) 有一种特殊的矩阵:单位矩阵,它从左上角到右下角的对角线上的元素均为1,除此以外全都为0.它在矩阵乘中相当于数乘中的1,即任何矩阵乘它都等于本身. code: #include <iostream> #include <cst…
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 如题,矩阵快速幂. 已知,矩阵乘…
题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 #include <cst…
矩阵快速幂 题目描述 矩阵乘法: A[n*m]*B[m*k]=C[n*k]; C[i][j]=sum(A[i][1~n]+B[1~n][j]) 为了便于赋值和定义,我们定义一个结构体储存矩阵: struct Matrix{ ][]; }; X*Y: Matrix cheng(Matrix X,Matrix Y) { Matrix C; ;i<=n;i++) ;j<=n;j++) { C.m[i][j]=; ;l<=n;l++) C.m[i][j]=(C.m[i][j]+X.m[i][l]…
洛谷P3390 题目背景 矩阵快速幂 题目描述 给定n*n的矩阵A,求A^k 输入输出格式 输入格式: 第一行,n,k 第2至n+1行,每行n个数,第i+1行第j个数表示矩阵第i行第j列的元素 输出格式: 输出A^k 共n行,每行n个数,第i行第j个数表示矩阵第i行第j列的元素,每个元素模10^9+7 输入输出样例 输入样例#1: 2 1 1 1 1 1 输出样例#1: 1 1 1 1 说明 n<=100, k<=10^12, |矩阵元素|<=1000 算法:矩阵快速幂 矩阵快速幂模板:…
快速幂 题目链接:https://www.luogu.org/problemnew/show/P1226 快速幂用了二分的思想,即将\(a^{b}\)的指数b不断分解成二进制的形式,然后相乘累加起来,就是用\(a^{b/2}×a^{b/2}\)去求\(a{^b}\). 例如:\(a^{11}=a^{(2^0+2^1+2^3)}\) 程序实现是这样的(使用了位运算): ll pow(ll b,ll p,ll k) { for(;p;p>>=1) // >> 右移等同于 /2 { if…
链接:https://www.luogu.org/problemnew/show/P3390 题意:矩阵快速幂模板题,思路和快速幂一致,只需提供矩阵的乘法即可. AC代码: #include<cstdio> #include<cstring> using namespace std; typedef long long LL; ; int n; LL k; struct Mat{ LL m[][]; }a,e; Mat mul(Mat& x,Mat& y){ Mat…