U,V能在最小(大)生成树上,当且仅当权值比它小(大)的边无法连通U,V. 两次最小割就OK了. --------------------------------------------------------------------- #include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<vector> #include<que…
http://www.lydsy.com/JudgeOnline/problem.php?id=2521 题意:每次能增加一条边的权值1,求最小代价让一条边保证在最小生成树里 思路:如果两个点中有环,那么这条边必须不能是环的最大边,这样子把之前所有的边权值变成V+1-v[i],无向图网络流就可以了 #include<algorithm> #include<cstdio> #include<cmath> #include<cstring> #include&l…
最小割最大流定理:(参考刘汝佳p369)增广路算法结束时,令已标号结点(a[u]>0的结点)集合为S,其他结点集合为T=V-S,则(S,T)是图的s-t最小割. Problem Description You, the head of Department of Security, recently received a top-secret information that a group of terrorists is planning to transport some WMD 1 fr…
1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1685  Solved: 724[Submit][Status][Discuss] Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤i≤M)条道路连接了vi,ui两个中转站,那么中转站vi可以通过该道路到达ui中转站,如果切断这条道路,需要代价ci.现在B国想找出一个路径切断方案…
1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][Status][Discuss] Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=…
/** 转自:http://blog.csdn.net/u011498819/article/details/20772147 题目:hdu1569 方格取数(2) 链接:https://vjudge.net/problem/HDU-1569 题意:一个方格n*m,取出一些点,要求两两不相邻,求最大和. 思路:建图过程:对于二维矩阵,如果(i+j)%2==0,那么放在X集,s->(i-1)*m+j, cap = 元素值.否则放在Y集, (i-1)*m+j->t, cap = 元素值. 如果u与…
1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路  1:(x,y)<==>(x+1,y)  2:(x,y)<==>(x,y+1)  3:(x,y)<==>(x+1,y+1)…
题目链接:https://vjudge.net/problem/HDU-1565 方格取数(1) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 9929    Accepted Submission(s): 3743 Problem Description 给你一个n*n的格子的棋盘,每个格子里面有一个非负数.从中取出若干个数,使得任…
最小割最大流定理的内容: 对于一个网络流图 $G=(V,E)$,其中有源点和汇点,那么下面三个条件是等价的: 流$f$是图$G$的最大流 残量网络$G_f$不存在增广路 对于$G$的某一个割$(S,T)$,此时流的流量等于其容量 证明如下: 首先证明$1\rightarrow2$: 正确性显然, 然后证明$2\rightarrow3$: 假设残留网络$G_f$不存在增广路,所以在残留网络$G_f$中不存在路径从$s$到达$t$.我们定义$S$集合为:当前残留网络中$s$能够到达的点.同时定义$T…
Destroying The Graph 构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大 则该图的最小割(最大流)即为最小花费. 简单证明: 根据ST割集的定义,将顶点分成两个点集.所以对于原图中的边(a,b),转换成 S->a1->b2->T. 则此时路径必定存在 一条割边,因为a1->b2为无穷大,所以割边必定是 S->a1…
链接 BZOJ 2561 题解 用Kruskal算法的思路来考虑,边(u, v, L)可能出现在最小生成树上,就是说对于所有边权小于L的边,u和v不能连通,即求最小割: 对于最大生成树的情况也一样.容易看出两个子问题是各自独立的,把两个最小割相加即可. #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <queue> using…
看错题了以为多组询问吓得不行-- 其实还挺好想的,就是数据范围一点都不网络流.把U作为s,V作为t,以最小生成树为例,(U,V,L)要在最小生成树上,就要求所有边权比L小的边不能连通(U,V)所在的联通块.这样一来模型就很显然了,就是对所有边权<L的边建边(u,v,1)(v,u,1),然后最小割即可.建双向边是因为反正只会割掉一条-- #include<iostream> #include<cstdio> #include<cstring> #include<…
题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2561 题意:给定一个边带正权的连通无向图G= (V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树 上? 思路:考虑克鲁斯卡尔算法的过程.若加入的 边(u,v,L)能够出现在最小生成树中,那么权值小于L的边…
1976: [BeiJing2010组队]能量魔方 Cube Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 879  Solved: 304[Submit][Status][Discuss] Description 小C 有一个能量魔方,这个魔方可神奇了,只要按照特定方式,放入不同的 能量水晶,就可以产生巨大的能量. 能量魔方是一个 N*N*N 的立方体,一共用 N3 个空格可以填充能量水晶. 能量水晶有两种: ·一种是正能量水晶(Positive…
题目链接 一条边不变其它边减少可以看做一条边增加其它边不变. 假设要加的边lab为(A->B,v),那么肯定是要使除这条边外,A->B的每条路径上的最小权值都\(>v\),这样在连通A,B时(即Kruskal中Union())才一定会选择这条边. 要求路径上最小边的权值\(>v\),即要求在路径上有任意一边权值\(\leq v\)时不连通.于是求最小割(使它不连通),割掉一条边的代价即\(v[lab]-v[i]+1\). 无向图建双向边. status里的怎么都那么快?复制了一份2…
题目描述 Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小生成树: 当然啦,这些都不是今天需要你解决的问题.Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中.为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的操作是指:先选…
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求最小割.然后从s沿着有剩余流量的边dfs,把dfs到的点都与(|)上1,因为是与,所以即使操作到了已知mark的点也没关系. 考虑这样做的意义.最小割就是把总点集分割为两个点集S,T,使得所有\(u\in S,v\in T,val(u,v) \)的值最小.也就是说,在这道题中的意义就是在当前位使最少…
2521: [Shoi2010]最小生成树 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 415  Solved: 242[Submit][Status][Discuss] Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小…
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=2485 Destroying the bus stations Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2651    Accepted Submission(s): 891 Problem Description Gabi…
Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小生成树: 当然啦,这些都不是今天需要你解决的问题.Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中.为了使得AB边一定在最小生成树中,你可以对这个无向图进行操作,一次单独的…
题目描述 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上? 输入 第一行包含用空格隔开的两个整数,分别为N和M:接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v).最后一行包含用空格隔开的三个整数,分别为u,v,和 L:数据保证图中没有自环. 输出…
题意: 把一个图分成两部分,要把点1和点2分开.隔断每条边都有一个花费,求最小花费的情况下,应该切断那些边.这题很明显是最小割,也就是最大流.把1当成源点,2当成汇点,问题是要求最小割应该隔断那条边. 思路: 最小割,就是在所有割中,容量之和最小的割,这就是我的理解,而最小割的值就是最大流的值,因为很容易想到,从源点s到汇点t的最大流必然会经过割边,那么就有最大流f<=c(割边的值),那么也就是说,当c==f的时候,就是c为小割,即最大流==最小割.第二点,怎么求出最小割的边:在求出最大流之后,…
3532: [Sdoi2014]Lis Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 704  Solved: 264[Submit][Status][Discuss] Description 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性排序之后,字典序最小的一种. Input 输入包含多组数据.   …
http://acm.hdu.edu.cn/showproblem.php?pid=3046 题意: 给出矩阵地图和羊和狼的位置,求至少需要建多少栅栏,使得狼不能到达羊. 思路:狼和羊不能到达,最小割最大流问题. 因为狼和羊都有多只,所以我们加一个超级源点和一个超级汇点,将每只狼与超级源点相连,容量为INF,将每只羊与超级汇点相连,容量为INF.对于地图上的点,每个点都与它上下左右相连,容量设为1. 接下来,我们只需要计算出从超级源点到超级汇点的最大流,因为最小割等于最大流. #include<…
题目:http://poj.org/problem?id=1966 把一个点拆成入点和出点,之间连一条边权为1的边,跑最大流即最小割: 原始的边权赋成inf防割: 枚举源点和汇点,直接相邻的两个点不必枚举: 注意:1.源点为枚举点i的出点,汇点为枚举点j的入点: 2.读入方式,免空格: 3.在dinic跑最大流的过程中,会改变边权,因此每次枚举都要复制一组边跑最大流,以免影响后面: 另:数据中的点从0开始,所以读入的时候++来使用. 代码如下: #include<iostream> #incl…
传送门 如果将每一个实验和其所对的仪器连一条有向边,那么原图就是一个dag图(有向无环) 每一个点都有一个点权,实验为收益(正数),仪器为花费(负数). 那么接下来可以引出闭合图的概念了. 闭合图是原图的一个点集,其中这个点集中每个点的出边所指向的点依然在这个点集中,那么这个点集就是个闭合图. 比如论文中的这个图: 在图 3.1 中的网络有 9 个闭合图(含空集):∅,{3,4,5},{4,5},{5},{2,4,5},{2,5},{2,3,4,5},{1,2,4,5},{1,2,3,4,5}…
[BZOJ2521][Shoi2010]最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小生成树: 当然啦,这些都不是今天需要你解决的问题.Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中.为了使得AB边一定在…
[BZOJ2561]最小生成树 Description 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上? Input 第一行包含用空格隔开的两个整数,分别为N和M: 接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v). 最后一行包含用空格隔开的三个整…
传送门 设\(f[i]\)为以\(i\)结尾的最长上升子序列.可以考虑建这样一张图,对于所有的\(i<j,f[j]=f[i+1]\)连边\((i,j)\),\(f[i]=1\)的话连边\((S,i)\),\(f[i]=max(f[j])\)的话连边\((j,T)\),然后就是删去若干个点使\(S,T\)不连通并且代价最小,那么拆点最小割就行了 然后是字典序的问题.我们把所有的点按\(c\)排个序然后看看这个点也就是新图中的这条边是否可以在最小割里.只要判断一下残量网络中是否存在\(u\)到\(u…
5.26 T2:最小生成树 Description Secsa最近对最小生成树问题特别感兴趣.他已经知道如果要去求出一个n个点.m条边的无向图的最小生成树有一个Krustal算法和另一个Prim的算法.另外,他还知道,某一个图可能有多种不同的最小生成树.例如,下面图 3中所示的都是图 2中的无向图的最小生成树: 当然啦,这些都不是今天需要你解决的问题.Secsa想知道对于某一条无向图中的边AB,至少需要多少代价可以保证AB边在这个无向图的最小生成树中.为了使得AB边一定在最小生成树中,你可以对这…