在机器学习或者是模式识别其中有一种重要的分类器叫做:SVM .这个被广泛的应用于各个领域.可是其计算的复杂度以及训练的速度是制约其在实时的计算机应用的主要原因.因此也非常非常多的算法被提出来.如SMO,Kernel的方法. 可是这里要提到的 Regularized least-squares classification 是一个和他有着相同的效果的分类器.比較而言计算却比較的简单(We see that a Regularized Least-Squares Classification pro…
train_data是训练特征数据, train_label是分类标签.Predict_label是预测的标签.MatLab训练数据, 得到语义标签向量 Scores(概率输出).1.逻辑回归(多项式MultiNomial logistic Regression)Factor = mnrfit(train_data, train_label);Scores = mnrval(Factor, test_data);scores是语义向量(概率输出).对高维特征,吃不消.2.随机森林分类器(Rand…
train_data是训练特征数据, train_label是分类标签.Predict_label是预测的标签.MatLab训练数据, 得到语义标签向量 Scores(概率输出). 1.逻辑回归(多项式MultiNomial logistic Regression)Factor = mnrfit(train_data, train_label);Scores = mnrval(Factor, test_data);scores是语义向量(概率输出).对高维特征,吃不消. 2.随机森林分类器(Ra…
CS231n之线性分类器 斯坦福CS231n项目实战(二):线性支持向量机SVM CS231n 2016 通关 第三章-SVM与Softmax cs231n:assignment1——Q3: Implement a Softmax classifier cs231n线性分类器作业:(Assignment 1 ): 二 训练一个SVM: steps: 完成一个完全向量化的SVM损失函数 完成一个用解析法向量化求解梯度的函数 再用数值法计算梯度,验证解析法求得结果 使用验证集调优学习率与正则化强度…
我们将讨论逻辑回归. 逻辑回归是一种将数据分类为离散结果的方法. 例如,我们可以使用逻辑回归将电子邮件分类为垃圾邮件或非垃圾邮件. 在本模块中,我们介绍分类的概念,逻辑回归的损失函数(cost functon),以及逻辑回归对多分类的应用. 我们还涉及正规化. 机器学习模型需要很好地推广到模型在实践中没有看到的新例子. 我们将介绍正则化,这有助于防止模型过度拟合训练数据. Classification 分类问题其实和回归问题相似,不同的是分类问题需要预测的是一些离散值而不是连续值. 如垃圾邮件分…
Logistic Regression 一.内容概要 Classification and Representation Classification Hypothesis Representation Decision Boundary Logistic Regression Model 损失函数(cost function) 简化损失函数和梯度下降算法 Advanced Optimization(高级优化方法) Solving the problem of Overfitting 什么是过拟…
输出空间 错误衡量方式 能不能直接用linear regression for classification 当成一个分类器回传回去 heuristic(启发式的:试探) 错误衡量 complexity term ERR^ trade bound tightness for efficiency 加速PLA或pocket linear regression 问题出发 解析解…
Liner classifier 线性分类器用作图像分类主要有两部分组成:一个是假设函数, 它是原始图像数据到类别的映射.另一个是损失函数,该方法可转化为一个最优化问题,在最优化过程中,将通过更新假设函数的参数值来最小化损失函数值. 从图像到标签分值的参数化映射:该方法的第一部分就是定义一个评分函数,这个函数将图像的像素值映射为各个分类类别的得分,得分高低代表图像属于该类别的可能性高低.下面会利用一个具体例子来展示该方法.现在假设有一个包含很多图像的训练集 $x_i \in \mathbb{R}…
Multi-label classification with Keras In today’s blog post you learned how to perform multi-label classification with Keras. Performing multi-label classification with Keras is straightforward and includes two primary steps: Replace the softmax activ…
1 引入 上一篇介绍了图像分类问题.图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像.我们还介绍了k-Nearest Neighbor (k-NN)分类器,该分类器的基本思想是通过将测试图像与训练集带标签的图像进行比较,来给测试图像打上分类标签.k-Nearest Neighbor分类器存在以下不足: (1)分类器必须记住所有训练数据并将其存储起来,以便于未来测试数据用于比较.这在存储空间上是低效的,数据集的大小很容易就以GB计. (2)对一个测试图像进行分类需要和所有训练…
众所周知,opencv下有自带的供人脸识别以及行人检测的分类器,也就是说已经有现成的xml文件供你用.如果我们不做人脸识别或者行人检测,而是想做点其他的目标检测该怎么做呢?答案自然是自己训练一个特定的训练器.opencv里面比较常用的分类器有svm以及级联分类器,svm的训练以及分类很简单,这里不再赘述,这里谈谈级联分类器的训练.级联分类器可是好东西,opencv已经封装了多尺度检测方法(multiScaleDetector)以及绘制外接矩形的方法,这两个方法为目标检测提供了非常大的便利性.以下…
opencv 手写选择题阅卷 (三)训练分类器 1,分类器选择:SVM 本来一开始用的KNN分类器,但这个分类器目前没有实现保存训练数据的功能,所以选择了SVN分类器; 2,样本图像的预处理和特征提取代码与识别代码中使用一样的代码. 3,训练时的输入数据主要为两个矩阵,一个矩阵保存所有样本的特征数据,每一行一个图像,另一个矩阵保存每个样本所属的类别,比如 1.0代表A,2.0代表B,0代表空白. 4,所有样本分别保存在5个文件夹中(一个是空白,四个字母ABCD),用批处理生成一个文本文件包括所有…
正样本来源是INRIA数据集中的96*160大小的人体图片,使用时上下左右都去掉16个像素,截取中间的64*128大小的人体. 负样本是从不包含人体的图片中随机裁取的,大小同样是64*128(从完全不包含人体的图片中随机剪裁出64*128大小的用于人体检测的负样本). SVM使用的是OpenCV自带的CvSVM类. 首先计算正负样本图像的HOG描述子,组成一个特征向量矩阵,对应的要有一个指定每个特征向量的类别的类标向量,输入SVM中进行训练. 训练好的SVM分类器保存为XML文件,然后根据其中的…
在2005年CVPR上,来自法国的研究人员Navneet Dalal 和Bill Triggs提出利用Hog进行特征提取,利用线性SVM作为分类器,从而实现行人检测.而这两位也通过大量的测试发现,Hog+SVM是速度和效果综合平衡性能较好的一种行人检测方法.后来,虽然很多研究人员也提出了很多改进的行人检测算法,但基本都以该算法为基础框架.因此,Hog+SVM也成为一个里程表式的算法被写入到OpenCV中.在OpenCV2.0之后的版本,都有Hog特征描述算子的API,而至于SVM,早在OpenC…
关于多分类 我们常见的逻辑回归.SVM等常用于解决二分类问题,对于多分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM,只是需要多个二分类来组成多分类,但这里讨论另外一种方式来解决多分类——SoftMax. SoftMax模型 Softmax回归模型是logistic回归模型在多分类问题上的推广,当分类数为2的时候会退化为Logistic分类..在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
原文链接:http://blog.csdn.net/v_july_v/article/details/7624837 作者:July.pluskid :致谢:白石.JerryLead 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得…
SVMs are considered by many to be the most powerful 'black box' learning algorithm, and by posing构建 a cleverly-chosen optimization objective优化目标, one of the most widely used learning algorithms today. 第一节 向量的内积(SVM的基本数学知识) Support Vector Machines 支持向…
转自:http://blog.csdn.net/v_july_v/article/details/7624837 目录(?)[-] 支持向量机通俗导论理解SVM的三层境界 前言 第一层了解SVM 1分类标准的起源Logistic回归 2线性分类的一个例子 3函数间隔Functional margin与几何间隔Geometrical margin 4最大间隔分类器Maximum Margin Classifier的定义 第二层深入SVM 1从线性可分到线性不可分 11从原始问题到对偶问题的求解 1…
支持向量机通俗导论(理解SVM的三层境界) 原文:http://blog.csdn.net/v_JULY_v/article/details/7624837 作者:July .致谢:pluskid.白石.JerryLead.说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月.声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等人的文章.文末2013年的PDF是为证. 前言 动笔写这个支持向量…
支持向量机通俗导论(理解SVM的三层境界) 作者:July :致谢:pluskid.白石.JerryLead. 出处:结构之法算法之道blog. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易…
支持向量机通俗导论(理解SVM的三层境界) 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者这个东西也不好讲清楚,尽管网上已经有朋友写得不错了(见文末参考链接),但在描述数学公式的时候还是显得不够.得益于同学白石的数学证明,我还是想尝试写一下,希望本文在兼顾通俗易懂的基础上,真真正正能足以成为一篇完整概括和介绍支持向量机的导论性的文章. 本文在写的过程中,参考了不…
一.文章来由 好久没写原创博客了,一直处于学习新知识的阶段.来新加坡也有一个星期,搞定签证.入学等杂事之后,今天上午与导师确定了接下来的研究任务,我平时基本也是把博客当作联机版的云笔记~~如果有写的不对的地方,欢迎批评指正. 二.<一天搞懂深度学习> 300多页的PPT,台大教授写的好文章. 对应的视频地址 1.Lecture I: Introduction of Deep Learning (1)machine learning≈找函数 training和testing过程 (2)单个神经网…
作者:July .致谢:pluskid.白石.JerryLead.说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年11月.声明:本文于2012年便早已附上所有参考链接,并注明是篇“学习笔记”,且写明具体参考了pluskid等人的文章.文末2013年的PDF是为证. 前言 动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因很简单,一者这个东西本身就并不好懂,要深入学习和研究下去需花费不少时间和精力,二者…
Tracking学习系列原创,转载标明出处: http://blog.csdn.net/ikerpeng/article/details/40144497 这篇文章非常赞啊!非常有必要将其好好的学习,今天首先记录它的代码思路(具体的推导过程后面会给出的). 首先,这篇文章使用的决策函数是一个结构风险最小化的函数: 这个函数中:前面是一个损失函数,损失函数里面的f(x)就是最后要求的判别函数:后面是一个结构化的惩处因子.对于SVM分类器来讲就是合页损失函数(Hinge loss).可是实际上,採用…
Linear Basis Function Models 线性模型的一个关键属性是它是参数的一个线性函数,形式如下: w是参数,x可以是原始的数据,也可以是关于原始数据的一个函数值,这个函数就叫basis function,记作φ(x),于是线性模型可以表示成: w0看着难受,定义一个函数φ0(x) = 1, 模型的形式再一次简化成: 以上就是线性模型的一般形式.basis function有很多选择,例如Gaussian.sigmoid.tanh (tanh(x) = 2 * sigmoid(…
原文地址:http://scikit-learn.org/stable/tutorial/basic/tutorial.html 翻译:Tacey Wong 概要: 该章节,我们将介绍贯穿scikit-learn使用中的"机器学习(Machine Learning)"这个词汇,并给出一些简单的学习示例. 前言 scikit-learn (Python机器学习库) 进行数据挖掘和数据分析的简单而高效的工具 任何人都可使用,可在多种场景/上下文复用 基于NumPy,SciPy和matplo…
第一步.初步了解SVM 1.0.什么是支持向量机SVM 要明白什么是SVM,便得从分类说起. 分类作为数据挖掘领域中一项非常重要的任务,它的目的是学会一个分类函数或分类模型(或者叫做分类器),而支持向量机本身便是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中. 支持向量机(SVM)是90年代中期发展起来的基于统计学习理论的一种机器学习方法,通过寻求结构化风险最小来提高学习机泛化能力,实现经验风险和置信范围的最小化,从而达到在统计样本量较少的情况下,亦能获得良好统计规律的目的. 通俗来…
0 url :http://blog.csdn.net/youyou1543724847/article/details/52818339Redis一点基础的东西目录 1.基础底层数据结构 2.windows下环境搭建 3.java里连接redis数据库 4.关于认证 5.redis高级功能总结1.基础底层数据结构1.1.简单动态字符串SDS定义: ...47分钟前1 url :http://blog.csdn.net/youyou1543724847/article/details/52818…