bzoj2850巧克力王国】的更多相关文章

巧克力王国 bzoj-2850 题目大意:给出n块巧克力,每块巧克力都有自己的两个参数x和y和本身的价值val,询问:m个人,每个人有两个系数和一个限度a,b,和c.求所有ax+by<=c的巧克力价值和. 注释:$1\le n,n\le 5\cdot 10^4$. 想法:我们将巧克力的两个参数分别当作它的横纵坐标,然后对于每一次询问就可以转化成查询给定直线下的点的点权和. 对于这个问题,我们可以建立KD-Tree解决. 估价函数就是看这个矩形是不是都选或者都不选,否则的话,就遍历这个矩形. 最后…
Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 505  Solved: 204 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜 欢过于甜的巧克力.对于每一块巧克力,我们设x和y为其牛奶和可可的含量.由于每个人对于甜的程度都有自己的 评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因此牛奶和可可含量分别为x 和y的巧克力对于他的甜味程度即为ax…
巧克力王国 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 861  Solved: 325[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜 欢过于甜的巧克力.对于每一块巧克力,我们设x和y为其牛奶和可可的含量.由于每个人对于甜的程度都有自己的 评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因…
分四种情况讨论:a,b>=0 a,b<0 a>=0,b<0 a<0,b>=0 然后每次检验是否进入一个矩形框 或者 是否直接利用这个矩形框的答案 仅仅利用两个对角的坐标进行更新即可. #include<cstdio> #include<cmath> #include<algorithm> using namespace std; typedef long long ll; #define N 50001 #define INF 214…
[BZOJ2850]巧克力王国 Description 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜 欢过于甜的巧克力.对于每一块巧克力,我们设x和y为其牛奶和可可的含量.由于每个人对于甜的程度都有自己的 评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因此牛奶和可可含量分别为x 和y的巧克力对于他的甜味程度即为ax + by.而每个人又有一个甜味限度c,所有甜味程度大于等于c的巧克力他都 无法接受.每块巧克力都…
巧克力王国 Time Limit: 60 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 巧克力王国里的巧克力都是由牛奶和可可做成的. 但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设x和y为其牛奶和可可的含量. 由于每个人对于甜的程度都有自己的评判标准,所以每个人都有两个参数a和b,分别为他自己为牛奶和可可定义的权重,因此牛奶和可可含量分别为x和y的巧克力对于他的甜…
原题链接 Description 给出个二维平面上的点,第个点为,权值为.接下来次询问,给出,求所有满足的点的权值和. Solution 对于这个点建一棵k-d树,子树维护一个子树和. 如果子树所代表的矩形的四个顶点都满足,说明子树中的所有点都满足,return sum: 如果都不满足,说明子树中的所有点都不满足,就不用做了: 否则就是部分有部分没有,判断当前节点是否满足,然后继续递归下去吧. Code //巧克力王国 #include <cstdio> #include <algori…
P4475 巧克力王国 题目描述 巧克力王国里的巧克力都是由牛奶和可可做成的.但是并不是每一块巧克力都受王国人民的欢迎,因为大家都不喜欢过于甜的巧克力. 对于每一块巧克力,我们设 \(x\) 和 \(y\) 为其牛奶和可可的含量.由于每个人对于甜的程度都有自己的评判标准,所以每个人都有两个参数 \(a\) 和 \(b\) ,分别为他自己为牛奶和可可定义的权重, 因此牛奶和可可含量分别为 \(x\) 和 \(y\) 的巧克力对于他的甜味程度即为 \(ax+by\).而每个人又有一个甜味限度 \(c…
KD-Tree 问平面内在某条直线下方的点的权值和 我一开始yy的是:直接判这个矩形最高的两个点(y坐标的最大值)是否在这条直线下方就可以了~即判$A*x+B*y<C$... 然而这并不对啊……因为你得分类讨论啊……不能直接判那个式子的啊…… 膜拜了hzwer的姿势:四个角都判,那么这样就避免了分类讨论……轻松+愉快 今天突然发现:KD-Tree是会Push_up叶子节点的,这点跟线段树不一样……QAQ怪不得以前模板那样写是错的…… 另外,鉴于上一题出了个讨厌的bug,我换了种姿势来push_u…
bzoj 2850 巧克力王国 钱限题.题面可以看这里. 显然 \(x\) \(y\) 可以看成坐标平面上的两维,蛋糕可以在坐标平面上表示为 \((x,y)\) ,权值为 \(h\) .用 \(kd-tree\) 维护这些点. 查询时,类似于线段树,若当前节点管辖范围完全在查询范围内,直接返回当前节点记录的总和;若完全在查询范围外,返回 \(0\) ;否则进入两颗子树,递归处理. 如何判断当前节点管辖范围与查询范围的关系?注意到查询范围是一个限制 \(ax+by<c\) ,即一个半平面.而用记录…