不多说,直接上干货! 这里,对于想用matlab语言来做的朋友,强烈推荐 http://www.cnblogs.com/tornadomeet/…
编者按:本文收集了百来篇关于机器学习和深度学习的资料,含各种文档,视频,源码等.并且原文也会不定期的更新.望看到文章的朋友能够学到很多其它. <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍非常全面,从感知机.神经网络.决策树.SVM.Adaboost 到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室…
Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 最近tensorflow团队出了一个model项目,和这个课程无关,但是可以参考 框架: TensorFlow 谷歌出品的基于Pytho…
人工智能 人工智能(Artificial Intelligence),英文缩写为AI.它是研究.开发用于模拟.延伸和扩展人的智能的理论.方法.技术及应用系统的一门新的技术科学. 人工智能是对人的意识.思维的信息过程的模拟.人工智能不是人的智能,但能像人那样思考.也可能超过人的智能. 人工智能的定义可以分为两部分,即“人工”和“智能”. 机器学习 1.    什么是机器学习 根据等人事件中判断人是否迟到了解什么是机器学习,具体参见地址:http://www.cnblogs.com/helloche…
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细推导. 1. 详细推导softmax代价函数的梯度 经典的logistics回归是二分类问题,输入向量$ x^{(i)}\in\Re^{n+1}$ 输出0,1判断\(y^{(i)}\in{\{0,1\}}\),Softmax回归模型是一种多分类算法模型,如图所示,输出包含k个类型,\(y^{(i)}\in{\…
UFLDL深度学习笔记 (一)基本知识与稀疏自编码 前言 近来正在系统研究一下深度学习,作为新入门者,为了更好地理解.交流,准备把学习过程总结记录下来.最开始的规划是先学习理论推导:然后学习一两种开源框架:第三是进阶调优.加速技巧.越往后越要带着工作中的实际问题去做,而不能是空中楼阁式沉迷在理论资料的旧数据中.深度学习领域大牛吴恩达(Andrew Ng)老师的UFLDL教程 (Unsupervised Feature Learning and Deep Learning)提供了很好的基础理论推导…
UFLDL深度学习笔记 (五)自编码线性解码器 1. 基本问题 在第一篇 UFLDL深度学习笔记 (一)基本知识与稀疏自编码中讨论了激活函数为\(sigmoid\)函数的系数自编码网络,本文要讨论"UFLDL 线性解码器",区别在于输出层去掉了\(sigmoid\),将计算值\(z\)直接作为输出.线性输出的原因是为了避免对输入范围的缩放: S 型激励函数输出范围是 [0,1],当$ f(z^{(3)}) $采用该激励函数时,就要对输入限制或缩放,使其位于 [0,1] 范围中.一些数据…
UFLDL深度学习笔记 (三)无监督特征学习 1. 主题思路 "UFLDL 无监督特征学习"本节全称为自我学习与无监督特征学习,和前一节softmax回归很类似,所以本篇笔记会比较简化,主题思路和步骤如下: 把有标签数据分为两份,先对一份原始数据做无监督的稀疏自编码训练,获得输入层到隐藏层的最优化权值参数\(W, b\): 把另一份数据分成分成训练集与测试集,都送入该参数对应的第一层网络(去掉输出层的稀疏自编码网络): 用训练集输出的特征作为输入,训练softmax分类器: 再用此参数…
深度学习与人类语言处理(Deep learning for Human Language Processing) 李宏毅老师深度学习与人类语言处理课程笔记,请看正文 这门课会学到什么? 为什么叫人类语言处理呢? 现在大家熟知的基本都是自然语言处理,那什么是自然语言呢? 在自然中发展出来的用于沟通的语言(例如中文.英文) 自然语言相反的是人造语言:例如编程(Java.python) 人类的自然语言分为两种形态:语音.文字 所以这门课叫深度学习与人类语言处理 大多数自然语言处理课程中语音处理只占了一…
语音识别 语音识别该何去何从? 1969年,J.R. PIERCE:"语音识别就像把水变成汽油.从大海中淘金.治疗癌症.人类登陆月球" 当然,这是50年前的想法,那么语音识别该如何做呢? 一个典型的语音识别系统如下,输入一段语音到模型,模型输出一段文本 Speech:表示一个长度为T,维度为d的向量序列 Text:一个token序列,长度为N,V个不同的token,通常T>N 接下来看看输入可以有哪些可能,输出有哪些可能,首先看下输出部分 输出Token 音位(phoneme,发…