大数据学习——采集文件到HDFS】的更多相关文章

采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs 根据需求,首先定义以下3大要素 l  采集源,即source——监控文件内容更新 :  exec  ‘tail -F file’ l  下沉目标,即sink——HDFS文件系统  :  hdfs sink l  Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel vi exec-hdfs-sink.conf agent1…
采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去 根据需求,首先定义以下3大要素 l  采集源,即source——监控文件目录 :  spooldir l  下沉目标,即sink——HDFS文件系统  :  hdfs sink l  source和sink之间的传递通道——channel,可用file channel 也可以用内存memory channel 配置文件编写: vi spooldir-hdfs-sink.conf #定义三大组件…
需要精通java开发,有一定linux基础. 1.简介 大数据就是对海量数据进行数据挖掘. 已经有了很多框架方便使用,常用的有hadoop,storm,spark,flink等,辅助框架hive,kafka,es,sqoop,flume等. 常见应用推荐系统,用户画像等. 2.hadoop hadoop有三个核心组件: hdfs:分布式文件系统 mapreduce:分布式运算编程框架 yarn:分布式资源调度平台 3.hdfs原理 hdfs存放的就是文件,顶层目录是/,可以对文件进行增删改查移的…
最近开始学习大数据,发现大数据有很多很多组件,我现在负责的是HDFS(Hadoop分布式储存系统)的学习,整理了一下HDFS的版本情况.因为HDFS是Hadoop的重要组成部分,所以有关HDFS的版本信息我也是通过查看Hadoop官网的每一个版本的Hadoop中HDFS的变化情况得到的,我尽可能的翻看了所有的信息,但是也可能有所疏漏,大家如果发现有不恰当的地方,可以在评论区留言,我有空的时候会做出修改. Hadoop的版本是并行发展的,(可以参考JDK的版本发展),比如在2.7.X发布更新时,2…
Hadoop模块 提到大数据,Hadoop是一个绕不开的话题,我们来看看Hadoop本身包含哪些模块. Common是基础模块,这个是必须用的.剩下常用的就是HDFS和YARN. MapReduce现在用的比较少了,多数场景下会被Spark取代. Ozone是一个新组件,对象存储,可以看做是HDFS的升级版. HDFS组成 作为Hadoop的分布式文件系统,它的思想远比这个产品本身更重要.它主要包含这么几个组成部分: NameNode,主节点,用来保存元数据信息,包括文件属性.文件切成多少个Bl…
1.HDFS核心概念: 块 (1)为了分摊磁盘读写开销也就是大量数据间分摊磁盘寻址开销 (2)HDFS块比普通的文件块大很多,HDFS默认块大小为64MB,普通的只有几千kb 原因:1.支持面向大规模数据存储 2.降低分布式节点的寻址开销 好处:1.支持大规模文件存储(可以将一个大的文件进行切割,放到不同的机器上去存储,这样就可以突破单机存储上限) 2.简化系统设计 3.适合数据备份 两大核心组件: 1.名称节点(NameNode相当于数据目录) 底层FsImage和各项操作EditLog组成最…
高可用架构图 先上一张搜索来的图. 如上图,HDFS的高可用其实就是NameNode的高可用. 上一篇里,SecondaryNameNode是NameNode单节点部署才会有的角色,它只帮助NameNode完成日志合并的工作,在NameNode出现问题时不能顶上去. 在高可用里,不再有SecondaryNameNode这个角色,Hadoop2.x版本支持NameNode的一主一备,3.x版本支持一主多备,由备机完成日志合并任务.某个时点只有主NameNode对外提供服务. 总结一下,在一个高可用…
命令行管理HDFS [root@server1 bin]# hadoop fs Usage: hadoop fs [generic options] [-appendToFile <localsrc> ... <dst>] [-cat [-ignoreCrc] <src> ...] [-checksum <src> ...] [-chgrp [-R] GROUP PATH...] [-chmod [-R] <MODE[,MODE]... | OCTAL…
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程前需要做一些准备工作,好了,那我们就开始吧! 1. 编程准备 在后续的学习中,我们基本都是在用IntelliJ IDEA这款集成开发环境,所以在Windows端,我们首先需要准备以下这三款软件: 1)IntelliJ IDEA软件下载并安装,盗版即可,激活码自己上百度搜,本人使用的版本是Intell…
引言 在大数据学习系列之一 ----- Hadoop环境搭建(单机) 成功的搭建了Hadoop的环境,在大数据学习系列之二 ----- HBase环境搭建(单机)成功搭建了HBase的环境以及相关使用介绍.本文主要讲解如何搭建Hadoop+Hive的环境. 一.环境准备 1,服务器选择 本地虚拟机 操作系统:linux CentOS 7 Cpu:2核 内存:2G 硬盘:40G 说明:因为使用阿里云服务器每次都要重新配置,而且还要考虑网络传输问题,于是自己在本地便搭建了一个虚拟机,方便文件的传输以…
引言 在上一篇 大数据学习系列之四 ----- Hadoop+Hive环境搭建图文详解(单机) 和之前的大数据学习系列之二 ----- HBase环境搭建(单机) 中成功搭建了Hive和HBase的环境,并进行了相应的测试.本文主要讲的是如何将Hive和HBase进行整合. Hive和HBase的通信意图 Hive与HBase整合的实现是利用两者本身对外的API接口互相通信来完成的,其具体工作交由Hive的lib目录中的hive-hbase-handler-*.jar工具类来实现,通信原理如下图…
引言 在上一篇中 大数据学习系列之五 ----- Hive整合HBase图文详解 : http://www.panchengming.com/2017/12/18/pancm62/ 中使用Hive整合HBase,并且测试成功了.在之前的大数据学习系列之一 ----- Hadoop环境搭建(单机) : http://www.panchengming.com/2017/11/26/pancm55/ 中成功的搭建了Hadoop的环境,本文主要讲的是Hadoop+Spark 的环境.虽然搭建的是单机版,…
引言 在之前的大数据学习系列中,搭建了Hadoop+Spark+HBase+Hive 环境以及一些测试.其实要说的话,我开始学习大数据的时候,搭建的就是集群,并不是单机模式和伪分布式.至于为什么先写单机的搭建,是因为作为个人学习的话,单机已足以,好吧,说实话是自己的电脑不行,使用虚拟机实在太卡了... 整个的集群搭建是在公司的测试服务搭建的,在搭建的时候遇到各种各样的坑,当然也收获颇多.在成功搭建大数据集群之后,零零散散的做了写笔记,然后重新将这些笔记整理了下来.于是就有了本篇博文. 其实我在搭…
前言 在之前的大数据学习系列之七 ----- Hadoop+Spark+Zookeeper+HBase+Hive集群搭建 中介绍了集群的环境搭建,但是在使用hive进行数据查询的时候会非常的慢,因为hive默认使用的引擎是MapReduce.因此就将spark作为hive的引擎来对hbase进行查询,在成功的整合之后,我将如何整合的过程写成本篇博文.具体如下! 事前准备 在进行整合之前,首先确保Hive.HBase.Spark的环境已经搭建成功!如果没有成功搭建,具体可以看我之前写的大数据学习系…
hadoop生态系统 zookeeper负责协调 hbase必须依赖zookeeper flume 日志工具 sqoop 负责 hdfs dbms 数据转换 数据到关系型数据库转换 大数据学习群119599574 hbase简介 hadoop database 是一个高可靠性.高性能.面向列.可伸缩.实时读写的分布式数据库 利用Hadoop HDFS作为其文件存储系统,利用Hadoop MapReduce 来处理Hbase中的海量数据,利用Zookeeper作为其分布式系统服务 主要用来存储非结…
1.Hadoop生态概况 Hadoop是一个由Apache基金会所开发的分布式系统集成架构,用户可以在不了解分布式底层细节情况下,开发分布式程序,充分利用集群的威力来进行高速运算与存储,具有可靠.高效.可伸缩的特点. 大数据学习资料分享群119599574 Hadoop的核心是YARN,HDFS,Mapreduce,常用模块架构如下 2.HDFS 源自谷歌的GFS论文,发表于2013年10月,HDFS是GFS的克隆版,HDFS是Hadoop体系中数据存储管理的基础,它是一个高度容错的系统,能检测…
作者: seriouszyx 首发地址:https://seriouszyx.top/ 代码均可在 Github 上找到(求Star) 最近想要了解一些前沿技术,不能一门心思眼中只有 web,因为我目前对 Java 语言及其生态相对熟悉,所以在网上搜集了 Hadoop 相关文章,并做了整合. 本篇文章在于对大数据以及 Hadoop 有一个直观的概念,并上手简单体验. Hadoop 基础概念 Hadoop 是一个用 Java 实现的开源框架,是一个分布式的解决方案,将大量的信息处理所带来的压力分摊…
部署规划 HBase全称叫Hadoop Database,它的数据存储在HDFS上.我们的实验环境依然基于上个主题Hive的配置,参考大数据学习(11)-- Hive元数据服务模式搭建. 在此基础上,增加HBase的部署规划.我感觉这8G的内存马上要跑不动了. 主机 RegionServer Master server01  •   server02  •   server03  • • 安装HBase 把HBase解压到/usr目录下,版本是2.26. [root@server01 home]…
1. hive的简介(具体见文档) Hive是分析处理结构化数据的工具   本质:将hive sql转化成MapReduce程序或者spark程序 Hive处理的数据一般存储在HDFS上,其分析数据底层的实现是MapReduce/spark,执行程序运行在Yarn上 其大致可以按如下图理解(具体可见HIVE文档) sql语句是对某个表进行操作,所以hive一定要创建一个表格,这个表格必须要映射到hdfs中某个具体的文件才行,而映射关系.表的结构数据以及hdfs中数据的存储结构都会在创建表时规定,…
大数据学习之Linux进阶 1-> 配置IP 1)修改配置文件 vi /sysconfig/network-scripts/ifcfg-eno16777736 2)注释掉dhcp #BOOTPROTO="dhcp" 3)添加配置(windows->ipconfig -all) IPADDR=192.168.50.179 NETMASK=225.255.255.0 GATEWAY=192.168.50.1 DNS1=219.141.136.10 4)重启网卡 service…
大数据学习之Linux基础 01:Linux简介 linux是一种自由和开放源代码的类UNIX操作系统.该操作系统的内核由林纳斯·托瓦兹 在1991年10月5日首次发布.,在加上用户空间的应用程序之后,成为Linux操作系统. Linux也是自由软件和开放源代码软件发展中最著名的例子. 应用:长时间的运行编写的程序代码,可以安装在各种计算机硬件设备中,如: 手机.平板电脑.路由器等 安卓最底层运行在linux. 02:Linux的分类 各种版本 1->Linux根据市场的需求不同,基本分两个方向…
Linux环境搭建完整操作流程(包含mysql的安装步骤) 从现在开始,就正式进入到大数据学习的前置工作了,即Linux的学习以及安装,作为运行大数据框架的基础环境,Linux操作系统的重要性自然不言而喻,我将分成两个部分来做梳理,第一部分是实操部分,即整个从0搭建Linux的完整操作流程,第二部分是理论部分,将会梳理Linux操作系统的各种指令以及基本知识,好了,那么我们开始吧! 1. 安装准备 安装Linux虚拟机之前我们首先要准备两个东西:VMware以及Centos的镜像文件 安装VMw…
Hadoop之HBASE 一.HBASE简介 HBase是一个开源的.分布式的,多版本的,面向列的,半结构化的NoSql数据库,提供高性能的随机读写结构化数据的能力.它可以直接使用本地文件系统,也可以使用Hadoop的HDFS文件存储系统.不过,为了提高数据的可靠性和系统的健壮性,并且发挥HBase处理大数据的能力,使用HDFS作为文件存储系统才更为稳妥. HBase存储的数据从逻辑上来看就像一张很大的表,并且它的数据列可以根据需要动态地增加.除此之外,每个单元(cell,由行和列所确定的位置)…
一.Linux lucene: 全文检索引擎的架构 solr: 基于lucene的全文搜索服务器,实现了可配置.可扩展并对查询性能进行了优化,并且提供了一个完善的功能管理界面. 推荐一个大数据学习群 142974151每天晚上20:10都有一节[免费的]大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享, 二.Hadoop HDFS: 分布式存储系统,包含NameNode,DataNode.NameNode:元数据,DataNode.Data…
##大数据学习 古斌6.6 01. linux系统的搭建: 选用 Contos 6.5 x64位系统 (CentOS-6.5-x86_64-minimal.iso) 我选择的为迷你版 模板机: blank ip 192.168.6.10 克隆机: bigdata01 ip:192.168.6.11 域名:bigdata01 bigdata02 ip:192.168.6.12 域名:bigdata02 bigdata03 ip:192.168.6.13 域名:bigdata03 bigdata04…
1. Redis Redis是目前一个非常优秀的key-value存储系统(内存的NoSQL数据库).和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set有序集合)和hash(哈希类型). 1.1 redis的安装(源码安装方式,官网供下载的redis,没有编译的,需要自己编译) (1)下载redis4的稳定版本 (2)上传redis-4.0.14.tar.gz到Linux服务器 (3)解压re…
1. 练习 数据: (1)需求1:统计有过连续3天以上销售的店铺有哪些,并且计算出连续三天以上的销售额 第一步:将每天的金额求和(同一天可能会有多个订单) SELECT sid,dt,SUM(money) day_money FROM v_orders GROUP BY sid,dt 第二步:给每个商家中每日的订单按时间排序并打上编号 SELECT sid,dt,day_money, ROW_NUMBER() OVER(PARTITION BY sid ORDER BY dt) rn FROM…
1.在讨论这个问题之前首先介绍一下什么是"大数据量sql文件". 导出sql文件.选择数据库-----右击选择"转储SQL文件"-----选择"结构和数据"  .保存文件db_mras.sql文件. 2.导入sql文件.在MYSQL中新建数据库db_mras.选择数据库-----右击选择"运行SQL文件"-----选择文件db_mras.sql,运行. 现在发现运行失败,提示错误"MySQL server has g…
Storm是一个分布式的.高容错的实时计算系统.Storm适用的场景: 1.Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中. 2.由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用. 那么下面就对大数据学习思路里的strom流式计算进行简单分解,了解一下在学习大数据中应该了解哪些流式计算的知识. 1.redis缓存系统大纲 学习内容:Redis的特点.安装如何使用命令客户端,redis的字符串类型.…
Java集合框架学习笔记 1. Java集合框架中各接口或子类的继承以及实现关系图: 2. 数组和集合类的区别整理: 数组: 1. 长度是固定的 2. 既可以存放基本数据类型又可以存放引用数据类型 3. 存放进数组的必须是相同类型的数据 VS 集合类: 1. 长度是可变的 2. 只能存放对象的引用 3. 存放进集合的可以是不同的数据类型 3. 集合类常用API源码分析 在之后的大数据学习中,灵活运用各种各样的数据结构可以说是一项基本技能了,因此,了解各种数据结构的底层源码将有助于用户更好地使用各…