转自:http://blog.csdn.net/itplus/article/details/21896619 机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5…