牛顿法与拟牛顿法(五) L-BFGS 算法】的更多相关文章

转自 https://blog.csdn.net/itplus/article/details/21897715…
一.牛顿法 对于优化函数\(f(x)\),在\(x_0\)处泰勒展开, \[f(x)=f(x_0)+f^{'}(x_0)(x-x_0)+o(\Delta x) \] 去其线性部分,忽略高阶无穷小,令\(f(x) = 0\)得: \[x=x_0-\frac{f(x_0)}{f^{'}(x_0)} \] 得牛顿法迭代公式: \[x^{k+1}=x^k-\frac{f(x^k)}{f^{'}(x^k)} \] 对于最优化问题 令导数等于零,得最优解,所以迭代公式为 \[x^{k+1}=x^k-\fra…
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…
简介:最近在看逻辑回归算法,在算法构建模型的过程中需要对参数进行求解,采用的方法有梯度下降法和无约束项优化算法.之前对无约束项优化算法并不是很了解,于是在学习逻辑回归之前,先对无约束项优化算法中经典的算法学习了一下.下面将无约束项优化算法的细节进行描述.为了尊重别人的劳动成果,本文的出处是:http://blog.csdn.net/itplus/article/details/21896453 . 从这里我们可以看出:要想迭代出Xk+1,就只需要计算Dk+1即可.DFP算法是对Dk+1的一个近似…
牛顿法 考虑如下无约束极小化问题: $$\min_{x} f(x)$$ 其中$x\in R^N$,并且假设$f(x)$为凸函数,二阶可微.当前点记为$x_k$,最优点记为$x^*$. 梯度下降法用的是一阶偏导,牛顿法用二阶偏导.以标量为例,在当前点进行泰勒二阶展开: $$\varphi(x)=f(x_k)+f'(x_k)(x-x_k)+\frac{1}{2}f''(x_k)(x-x_k)^2$$ 极小值点满足$\varphi'(x)=0$,求得: $$x_{k+1}=x_k-\frac{f'(x…
一.梯度下降法 梯度:如果函数是一维的变量,则梯度就是导数的方向:      如果是大于一维的,梯度就是在这个点的法向量,并指向数值更高的等值线,这就是为什么求最小值的时候要用负梯度 梯度下降法(Gradient Descent) 梯度下降法是最早最简单,也是最为常用的最优化方法.梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解.一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的.梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下…
拟牛顿法/Quasi-Newton,DFP算法/Davidon-Fletcher-Powell,及BFGS算法/Broyden-Fletcher-Goldfarb-Shanno 转载须注明出处:http://www.codelast.com/ 在最优化领域,有几个你绝对不能忽略的关键词:拟牛顿.DFP.BFGS.名字很怪,但是非常著名.下面会依次地说明它们分别“是什么”,“有什么用” 以及 “怎么来的”. 但是在进入正文之前,还是要先提到一个概念上的区别,否则将影响大家的理解:其实DFP算法.B…
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5) L-BFGS 算法 作者: peghoty 出处: http://blog.csdn.net/itplus/…
转自:http://blog.csdn.net/itplus/article/details/21896619 机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering 算法,其主要工作在于求解一个非线性极小化问题.在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是 L-BFGS.为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来. 目录链接 (1) 牛顿法 (2) 拟牛顿条件 (3) DFP 算法 (4) BFGS 算法 (5…