jieba中文处理】的更多相关文章

  jieba中文分词¶   中文与拉丁语言不同,不是以空格分开每个有意义的词,在我们处理自然语言处理的时候,大部分情况下,词汇是对句子和文章的理解基础.因此需要一个工具去把完整的中文分解成词. jieba是一个分词起家的中文工具.   基本分词函数与用法¶   安装:pip install jieba(全自动安装方式成功,其他安装方式未尝试) 函数: jieba.cut()三个参数 :需要分词的字符串 :cut_all参数用来控制是否采用全模式,默认是精确模式 :HMM参数用来控制是否使用HM…
python安装Jieba中文分词组件 1.下载http://pypi.python.org/pypi/jieba/ 2.解压到解压到python目录下: 3.“win+R”进入cmd:依次输入如下代码: C:\Users\Administrator>cd D:\softwareIT\Python27\jieba-0.39 C:\Users\Administrator>d: D:\softwareIT\Python27\jieba-0.39>python setup.py install…
一.未登录词问题在jieba中文分词的第一节曾提到未登录词问题 中文分词的难点 分词规范,词的定义还不明确 (<统计自然语言处理>宗成庆)歧义切分问题,交集型切分问题,多义组合型切分歧义等 结婚的和尚未结婚的 => 结婚/的/和/尚未/结婚/的 结婚/的/和尚/未/结婚/的未登录词问题 有两种解释:一是已有的词表中没有收录的词,二是已有的训练语料中未曾出现过的词,第二种含义中未登录词又称OOV(Out of Vocabulary).对于大规模真实文本来说,未登录词对于分词的精度的影响远超…
简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb…
问题小结 1.安装 需要用到python,根据python2.7选择适当的安装包.先下载http://pypi.python.org/pypi/jieba/ ,解压后运行python setup.py install 若需要安装到myeclipse, 1.首先需要myeclipse能支持python,安装pydev.不同的pydev对于环境的要求不同,注意看jre的要求.   这一步的操作可以参考 http://blog.csdn.net/cssmhyl/article/details/2281…
简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb…
一.结巴中文分词采用的算法 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG)采用了动态规划查找最大概率路径, 找出基于词频的最大切分组合对于未登录词,采用了基于汉字成词能力的HMM模型,使用了Viterbi算法 二.结巴中文分词支持的分词模式 目前结巴分词支持三种分词模式: 精确模式,试图将句子最精确地切开,适合文本分析:全模式,把句子中所有的可以成词的词语都扫描出来, 速度非常快,但是不能解决歧义:搜索引擎模式,在精确模式的基础上,对长词再次切分…
1. NLP 走近自然语言处理 概念 Natural Language Processing/Understanding,自然语言处理/理解 日常对话.办公写作.上网浏览 希望机器能像人一样去理解,以人类自然语言为载体的文本所包含的信息,并完成一些特定任务 内容中文分词.词性标注.命名实体识别.关系抽取.关键词提取.信息抽取.依存分析.词嵌入…… 应用篇章理解.文本摘要.情感分析.知识图谱.文本翻译.问答系统.聊天机器人…… 2. NLP 使用jieba分词处理文本,中文分词,关键词提取,词性标…
简介 平时经常用Python写些小程序.在做文本分析相关的事情时免不了进行中文分词,于是就遇到了用Python实现的结巴中文分词.jieba使用起来非常简单,同时分词的结果也令人印象深刻,有兴趣的可以到它的在线演示站点体验下(注意第三行文字). .NET平台上常见的分词组件是盘古分词,但是已经好久没有更新了.最明显的是内置词典,jieba的词典有50万个词条,而盘古的词典是17万,这样会造成明显不同的分词效果.另外,对于未登录词,jieba“采用了基于汉字成词能力的HMM模型,使用了Viterb…
第一次接触这个工具,是在研一上学期的一门课里.由于要做课程设计论文,我当时选择做中文分词处理,自然而然就接触到这个工具了. 但是呢,由于研究生研究方向与NLP无关,也就没有深入的研究过. 现在由于工作需要,特地重新来学习一番. 首先介绍我的电脑环境:win10+anaconda3 (python3.7.3) anaconda prompt终端输入:  conda install -c conda-forge jieba 具体需要掌握的内容:…