目录 1.直方图均衡化 2.直方图规定化 @ 1.直方图均衡化 对图像进行非线性拉伸,重新分配图像像元值,使一定灰度范围内像元值的数量大致相等就是直方图的均衡化.原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小,会产生粗略的分类的视觉效果. 在MATLAB中,histeq函数用于直方图的均衡化. 实现代码如下 clear close all clc I=imread('peppers.png'); subplot(…
图像增强的目的:改善图像的视觉效果或使图像更适合于人或机器的分析处理.通过图像增强,可以减少图像噪声,提高目标与背景的对比度,也可以增强或抑制图像中的某些细节.  --------------------------------------------------------------------------------------------------- 灰度变换:把原图像的像素灰度经过某个函数变换成新图像的灰度.可分为直线灰度变换法和直方图修正法. 直线灰度变换法:线性.分段线性.非线性…
1 直方图均衡化(Histogram Equalization)简介 图像对比度增强的方法可以分成两类:一类是直接对比度增强方法;另一类是间接对比度增强方法.直方图拉伸和直方图均衡化是两种最常见的间接对比度增强方法.直方图拉伸是通过对比度拉伸对直方图进行调整,从而“扩大”前景和背景灰度的差别,以达到增强对比度的目的,这种方法可以利用线性或非线性的方法来实现;直方图均衡化则通过使用累积函数对灰度值进行“调整”以实现对比度的增强. 如果一副图像的像素占有很多的灰度级而且分布均匀,那么这样的图像往往有…
这是数字图像处理课的大作业,完成于 2013/06/17,需要调用 openCV 库,完整源码和报告如下: #include <cv.h> #include <highgui.h> #include <stdio.h> #include <stdlib.h> #include <math.h> #include <assert.h> #include <string> /* 灰度级结点 */ typedef struct…
直方图均衡化是什么有什么用 先说什么是直方图均衡化,通俗的说,以灰度图为例,原图的某一个像素为x,经过某个函数变为y.形成新的图.新的图的灰度值的分布是均匀的,这个过程就叫直方图均衡化. 图像直方图均衡化作用:用来增强对比度. 这种方法通常用来增加许多图像的全局对比度,尤其是当图像的有用数据的对比度相当接近的时候.通过这种方法,亮度可以更好地在直方图上分布.这样就可以用于增强局部的对比度而不影响整体的对比度,直方图均衡化通过有效地扩展常用的亮度来实现这种功能. 这种方法对于背景和前景都太亮或者太…
直方图均衡化 图像直方图: 是指对整个图像像在灰度范围内的像素值是指对整个图像像在灰度范围内的像素值(~)统计出现频率次数,据此生成的直方图,称为图像直方图-直方图. 直方图反映了图像灰度的分布情况.是图像的统计学特征. 直方图均衡化 通过上一课中的remap我们知道可以将图像灰度分布从一个分布映射到另外一个分布, 然后在得到映射后的像素值即可. equalizeHist( InputArray src, //输入图像,必须是8-bit的单通道图像 OutputArray dst // 输出结果…
直方图均衡化又称直方图修平,是一种很重要的非线性点运算.使用该方法可以加强图像的局部对比度,尤其是当图像的有用数据的对比度相当接近的时候.通过这种方法,亮度可以更好的在直方图上分布. 直方图均衡化的基本思想是把原始图像的直方图变换为均匀分布的形式.这样增加了灰度值的动态范围,从而达到增强图像整体对比度的效果. 算法步骤: 1)计算图像f(x,y)的各灰度级中像素出现的概率p(i). 2) 计算p的累计概率函数c(i),c即为图像的累计归一化直方图 3)将c(i)缩放至0~255范围内 /// <…
什么是直方图均衡化? 直方图均衡化是一种简单有效的图像增强技术,通过改变图像的直方图来改变图像中各像素的灰度,主要用于增强动态范围偏小的图像的对比度.原始图像由于其灰度分布可能集中在较窄的区间,造成图像不够清晰.例如,过曝光图像的灰度级集中在高亮度范围内,而曝光不足将使图像灰度级集中在低亮度范围内.采用直方图均衡化,可以把原始图像的直方图变换为均匀分布(均衡)的形式,这样就增加了像素之间灰度值差别的动态范围,从而达到增强图像整体对比度的效果.换言之,直方图均衡化的基本原理是:对在图像中像素个数多…
昨天说了,今天要好好的来解释说明一下直方图均衡化.并且通过不调用histeq函数来实现直方图的均衡化. 一.直方图均衡化概述 直方图均衡化(Histogram Equalization) 又称直方图平坦化,实质上是对图像进行非线性拉伸,重新分配图像象元值,使一定灰度范围内象元值的数量大致相等.这样,原来直方图中间的峰顶部分对比度得到增强,而两侧的谷底部分对比度降低,输出图像的直方图是一个较平的分段直方图:如果输出数据分段值较小的话,会产生粗略分类的视觉效果.[1] 根据香农定理关于信息熵的定义:…
原理: 直方图均衡化首先是一种灰度级变换的方法: 原来的灰度范围[r0,rk]变换到[s0,sk]变换函数为:s=T(r); 为便于实现,可以用查找表(look-up table)的方式存储,即:原始的灰度作为查找表的索引,表中的内容是新的灰度值. 其次,直方图均衡化是图像增强的一种基本方法,可提高图像的对比度,即:将较窄的图像灰度范围以一定规则拉伸至较大(整个灰度级范围内)的范围. 目的是在得到在整个灰度级范围内具有均匀分布的图像. 所以,当输入:直方图H(r)[此处指每个灰度级占有的像素数]…