R语言:怎么进行异常检测】的更多相关文章

Twritters的异常检测算法(Anomaly Detection)做的比较好,Seasonal Hybrid ESD算法是先用STL把序列分解,考察残差项.假定这一项符合正态分布,然后就可以用Generalized ESD提取离群点. 目标是检测出时间序列数据集的异常点,如图所示,蓝色线是时间序列数据集,红色是圈是异常点. R语言实现如下,一些依赖包需要install.packages("")或者手动在cran社区下载(注意依赖包的下载).本人github下载源码. 1 主函数是,…
本文转载自cador<使用R语言进行异常检测> 本文结合R语言,展示了异常检测的案例,主要内容如下: (1)单变量的异常检测 (2)使用LOF(local outlier factor,局部异常因子)进行异常检测 (3)通过聚类进行异常检测 (4)对时间序列进行异常检测 一.单变量异常检测 本部分展示了一个单变量异常检测的例子,并且演示了如何将这种方法应用在多元数据上.在该例中,单变量异常检测通过boxplot.stats()函数实现,并且返回产生箱线图的统计量.在返回的结果中,有一个部分是o…
Twitter开源的时序数据突变检测(BreakoutDetection),基于无参的E-Divisive with Medians (EDM)算法,比传统的E-Divisive算法快3.5倍以上,并且具有鲁棒统计性,就是你加入一些离群点或异常点,并不影响该算法的检测效果,不过最关键的还是无参特性,有时候调参真是件摸着石头过河的事. 它认为突变有两种方式: 1.Mean Shift:突然跳变,比如CPU从40%一跃跳变为60%,像佛教里讲的“顿宗” 2.Ramp Up:缓慢从一个平稳状态渐变到另…
异常检测原理是根据训练数据的高斯分布,计算均值和方差,若测试数据样本点带入高斯公式计算的概率低于某个阈值(0.1),判定为异常点. 1 创建数据集转化工具类,把csv数据集转化为RDD数据结构 import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.mllib.regression.LabeledPoint import org.apache.spark.rdd.RDD object Featu…
数据结构 创建向量和矩阵 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 函数help() 生成向量 seq() 生成字母序列letters 新建向量 Which()函数,rev()函数,sort()函数 生成矩阵 函数matrix() 矩阵运算 函数t(),矩阵加减 矩阵运算 矩阵相乘,函数diag() 矩阵…
本文对应<R语言实战>第8章:回归 回归是一个广义的概念,通指那些用一个或多个预测变量(也称自变量或解释变量)来预测响应变量(也称因变量.效标变量或结果变量)的方法.通常,回归分析可以用来挑选与相应变量相关的解释变量,可以描述两者的关系,也可以生成一个等式,通过解释变量来预测响应变量. 回归分析的各种变体 回归类型 用途 简单线性 用一个量化的解释变量预测一个量化的响应变量 多项式 用一个量化的解释变量预测一个量化的响应变量,模型的关系是n阶多项式 多元线性 用两个或多个量化的解释变量预测一个…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:异常值处理一般分为以下几个步骤:异常值检测.异常值筛选.异常值处理. 其中异常值检测的方法主要有:箱型图.简单统计量(比如观察极值) 异常值处理方法主要有:删除法.插补法.替换法. 提到异常值不得不说一个词:鲁棒性.就是不受异常值影响,一般是鲁棒性高的数据,比较优质. 一.异常值检验 异常值大概包括缺失值.离群值.重复值,数据不一致.…
在数据挖掘的过程中,数据预处理占到了整个过程的60% 脏数据:指一般不符合要求,以及不能直接进行相应分析的数据 脏数据包括:缺失值.异常值.不一致的值.重复数据及含有特殊符号(如#.¥.*)的数据 数据清洗:删除原始数据集中的无关数据.重复数据.平滑噪声数据.处理缺失值.异常值等 缺失值处理:删除记录.数据插补和不处理 主要用到VIM和mice包 install.packages(c("VIM","mice")) 1.处理缺失值的步骤 步骤: (1)识别缺失数据:…
如何判断我们的线性回归模型是正确的? 1.回归诊断的基本方法opar<-par(no.readOnly=TRUE) fit <- lm(weight ~ height, data = women)par(mfrow = c(2, 2))plot(fit)par(opar) 为理解这些图形,我们来回顾一下OLS回归的统计假设.(1)正态性(主要使用QQ图) 当预测变量值固定时,因变量成正态分布,则残差值也应该是一个均值为0的正态分布.正态Q-Q图(Normal Q-Q,右上)是在正态分布对应的值…
在Github上搜索“Anomaly Detection”,Twitter的异常检测框架(基于R语言)高居榜首,可见效果应该不错: 但是活跃度并不高,3-4年没人维护了: 因此在使用时难免会遇到一些坑,整个使用方式如下(红色部分,就是直接在RStudio中运行时,可能有异常的地方): install.packages("devtools") devtools::install_github("twitter/AnomalyDetection") library(An…
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适合分类,也适合回归.KNN算法广泛应用在推荐系统.语义搜索.异常检测. KNN算法分类原理图: 图中绿色的圆点是归属在红色三角还是蓝色方块一类?如果K=5(离绿色圆点最近的5个邻居,虚线圈内),则有3个蓝色方块是绿色圆点的“最近邻居”,比例为3/5,因此绿色圆点应当划归到蓝色方块一类:如果K=3(离…
异常值检测 一.实验说明 1. 环境登录 无需密码自动登录,系统用户名shiyanlou,密码shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到程序: 1. LX终端(LXTerminal): Linux命令行终端,打开后会进入Bash环境,可以使用Linux命令2. GVim:非常好用的编辑器,最简单的用法可以参考课程[Vim编辑器](http://www.shiyanlou.com/courses/2)3. R:在命令行输入‘R’进入交互式环…
1. 主要观点总结 0x1:什么场景下应用时序算法有效 历史数据可以被用来预测未来数据,对于一些周期性或者趋势性较强的时间序列领域问题,时序分解和时序预测算法可以发挥较好的作用,例如: 四季与天气的关系模式 以交通量计算的交通高峰期的模式 心跳的模式 股票市场和某些产品的销售周期 数据需要有较强的稳定性,例如”预测商店营业额“和"预测打车订单"的稳定性就比"预测某台服务器何时处于被入侵的异常状态"要强.从形成机制上讲,商店营业额和打车订单是由人的行为驱动的,风是由自…
数据结构 创建向量和矩阵 1 函数c(), length(), mode(), rbind(), cbind() 求平均值,和,连乘,最值,方差,标准差 1 函数mean(), sum(), min(), max(), var(), sd(), prod() 帮助文档 1 函数help() 生成向量 1 seq() 生成字母序列letters 新建向量 1 Which()函数,rev()函数,sort()函数 生成矩阵 1 函数matrix() 矩阵运算 1 函数t(),矩阵加减 矩阵运算 1…
论文http://202.119.32.195/cache/10/03/cs.nju.edu.cn/da2d9bef3c4fd7d2d8c33947231d9708/tkdd11.pdf 1. INTRODUCTION 异常是与正常样例有着不同的数据特性的数据模式.检测异常的能力具有重要的相关性,异常经常在多种应用领域中提供关键和可操作的信息.比如在信用卡交易中能够显示信用卡的使用有欺诈行为:在天文图像中的异常点能够说明发现了新的星星:一个不正常的计算机网络流量模式能够代表(stand for)…
支持向量机是一个相对较新和较先进的机器学习技术,最初提出是为了解决二类分类问题,现在被广泛用于解决多类非线性分类问题和回归问题.继续阅读本文,你将学习到支持向量机如何工作,以及如何利用R语言实现支持向量机. 支持向量机如何工作? 简单介绍下支持向量机是做什么的: 假设你的数据点分为两类,支持向量机试图寻找最优的一条线(超平面),使得离这条线最近的点与其他类中的点的距离最大.有些时候,一个类的边界上的点可能越过超平面落在了错误的一边,或者和超平面重合,这种情况下,需要将这些点的权重降低,以减小它们…
R 语言实战(第二版) part 3 中级方法 -------------第8章 回归------------------ #概念:用一个或多个自变量(预测变量)来预测因变量(响应变量)的方法 #最常用:OLS--普通最小二乘回归法,包括简单线性回归.多项式回归.多元线性回归 #过程:拟合OLS回归模型-->评价拟合优度-->假设检验-->选择模型 #OLS回归 #目标:减少因变量的真实值和预测值的差值来获得模型参数(截距和斜率),即使得残差平方和最小 #数据需满足:正态性.独立性.线性…
软件安全课程的一次实验,整理之后发出来共享. 什么是KD树 要说KD树,我们得先说一下什么是KNN算法. KNN是k-NearestNeighbor的简称,原理很简单:当你有一堆已经标注好的数据时,你知道哪些是正类,哪些是负类.当新拿到一个没有标注的数据时,你想知道它是哪一类的.只要找到它的邻居(离它距离短)的点是什么类别的,所谓近朱者赤近墨者黑,KNN就是采用了类似的方法. 如上图,当有新的点不知道是哪一类时,只要看看离它最近的几个点是什么类别,我们就判断它是什么类别. 举个例子:我们将k取3…
R语言作为BI中ETL的工具,增删改 R语言提供了强大的R_package与各种数据库进行数据交互. 外加其强大数据变换清洗函数,为ETL提供一条方便快捷的道路. RODBC ROracal RMysql Rmongodb http://mirrors.ustc.edu.cn/CRAN/web/packages/rmongodb/vignettes/rmongodb_cheat_sheet.pdf step1 新建连接con,并查看其信息 library(RODBC) con<-odbcConn…
转载:http://blog.fens.me/r-multi-linear-regression/ 前言 本文接上一篇R语言解读一元线性回归模型.在许多生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论.这其中可能包括了因为更好的家庭条件,所以有了更好的教育:因为在一线城市发展,所以有了更好的工作机会:所处的行业赶上了大的经济上行周期等.要想解读这些规律,是复杂的.多维度的,多元回归分析方法更适合解读生活的规律. 由于本文为非统计的专业…
转载自:http://blog.fens.me/r-linear-regression/ 前言 在我们的日常生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小:人的身高和体重,普遍来看越高的人体重也越重.还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高:市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强. 如果我们要研究这些事件,找到不同变量之间的关系,我们就会用到回归分析.一元线性回归分析是处理两个变量之间关系的最简单模型,是…
据我们所知,有‘已知的已知’,有些事,我们知道我们知道:我们也知道,有 ‘已知的未知’,也就是说,有些事,我们现在知道我们不知道.但是,同样存在‘不知的不知’——有些事,我们不知道我们不知道. 上一章中分类和回归都属于监督学习.当目标值是未知时,需要使用非监督学习,非监督学习不会学习如何预测目标值.但是,它可以学习数据的结构并找出相似输入的群组,或者学习哪些输入类型可能出现,哪些类型不可能出现. 5.1 异常检测 异常检测常用于检测欺诈.网络攻击.服务器及传感设备故障.在这些应用中,我们要能够找…
导言:     较早之前就听说R是一门便捷的数据分析工具,但由于课程设计的原因,一直没有空出足够时间来进行学习.最近自从决定本科毕业出来找工作之后,渐渐开始接触大数据行业的技术,现在觉得是时候把R拿下了:用了3天时间,除了对R先有一个大概认识之外,也着手敲指令.由于计算机专业的底子还不错,而且先后接触过不下10种编程语言,感觉R语言入门上手还是挺简单的.下面是自己汇总的一些简单入门代码供大家参考,感兴趣的朋友也可逐行敲打测试. 1. 介绍变量.顺序结构.分支结构.循环结构.函数使用.获取帮助等知…
之前一直只是在写小程序脚本工具,几乎不会对异常和错误进行控制和处理. 随着脚本结构和逻辑更复杂,脚本输出结果的准确性验证困难,同时已发布脚本的维护也变得困难.所以也开始考虑引入异常处理和测试工具的事情. 不过好像R语言的异常处理似乎有些辣鸡?查了下资料和try的文档说明,感觉说的并不清楚. 在网上查了一些资料,对R语言异常处理做了比较详细的说明,留档作为参考.至于测试工具的问题,后续还是再考虑下. 文章链接:R语言-处理异常值或报错的三个示例 原文参考了以下几个网页: http://stacko…
本文在Creative Commons许可证下发布. 在fedora Linux上断断续续使用R语言过了9年后,发现R语言在国内用的人逐渐多了起来.由于工作原因,直到今年暑假一个赴京工作的机会与一位统计专业的人士聊天,才知道R语言的强大威力!(当然这里没有贬低SPSS, SAS,Stata的意思). R语言是用于统计分析.绘图的语言和操作环境.R是属于GNU系统的一个自由.免费.源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具.它是统计领域广泛使用的诞生于 1980年左右的 S 语言的…
矩阵(matrix)是一种特殊的向量,包含两个附加的属性:行数和列数.所以矩阵也是和向量一样,有模式(数据类型)的概念.(但反过来,向量却不能看作是只有一列或一行的矩阵. 数组(array)是R里更一般的对象,矩阵是数组的一个特殊情形.数组可以是多维的.例如:一个三维数组可以包含行.列和层(layer),而一个矩阵只有行和列两个维度 1.创建矩阵 矩阵的行和列的下标都是从1开始,如:矩阵a左上角的元素记作a[1,1].矩阵在R中是按列存储的,也就是说先存储第一列,再存储第二列,以此类推. > y…
本文对应<R语言实战>第9章:方差分析:第10章:功效分析 ==================================================================== 方差分析: 回归分析是通过量化的预测变量来预测量化的响应变量,而解释变量里含有名义型或有序型因子变量时,我们关注的重点通常会从预测转向组别差异的分析,这种分析方法就是方差分析(ANOVA).因变量不只一个时,称为多元方差分析(MANOVA).有协变量时,称为协方差分析(ANCOVA)或多元协方差分析…
一.正态分布参数检验 例1. 某种原件的寿命X(以小时计)服从正态分布N(μ, σ)其中μ, σ2均未知.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264                  222 362 168 250 149 260 485 170 问是否有理由认为元件的平均寿命大于255小时? 解:按题意,需检验 H0: μ ≤ 225     H1: μ >  225 此问题属于单边检验问题 可以使用R语言t.test t.test(x,y=N…
正态检验与R语言 1.Kolmogorov–Smirnov test 统计学里, Kolmogorov–Smirnov 检验(亦称:K–S 检验)是用来检验数据是否符合某种分布的一种非参数检验,通过比较一个频率分布f(x)与理论分布g(x)或者两个观测值分布来判断是否符合检验假设.其原假设H0:两个数据分布一致或者数据符合理论分布.拒绝域构造为:D=max| f(x)- g(x)|,当实际观测值D>D(n,α)则拒绝H0,否则则接受H0假设.由于KS检验不需要知道数据的分布情况,在小样本的统计分…
R语言简介: R语言是一门专用于统计分析的语言,有大量的内置函数和第三方库来制作基于数据的表格 准备工作 安装R语言 https://cran.rstudio.com/bin/windows/base/R-3.4.3-win.exe 安装Rstudio https://download1.rstudio.org/RStudio-1.1.383.exe 打开Rstudio可以看到如下界面 目录类命令: 1.getwd() #查看当前目录 2.setwd('') #设置当前文件保存的目录 加载exc…