Catalan数的理解】的更多相关文章

Catalan数的理解 f(0)=1 f(1)=1 f(2)=2 f(3)=5 f(4)=14 f(5)=42     f(2)=f(1)+f(1)   f(3)=f(2)+f(1)*f(1)*f(2)   f(4)=f(3)+f(2)*f(1)+f(1)*f(2)+f(3)     通项公式:f(n)= f(n-1) + f(n-2)f(1) + f(n-3)f(2) + ... + f(1)f(n-2) + f(n-1) 理解:固定一个,n-1个全在左边,n-1个全在右边,共有f(n-1)+…
catalan数的新理解h[5]==h[4][0]+h[3][1]+h[2][2]+h[1][3]+h[0][4];对于这种递推式就是catalan数…
全是入门的一些东西.基本全是从别处抄的. 栈: 支持单端插入删除的线性容器. 也就是说,仅允许在其一端加入一个新元素或删除一个元素. 允许操作的一端也叫栈顶,不允许操作的一端也叫栈底. 数个箱子相叠就可以认为是一个栈,只能在最顶端加入一个新箱子或拿走一个箱子. 栈中的元素遵循后进先出(last in first out,LILO)的规律.即:更早出栈的元素,应为更早入栈者. 这是一个演示: 奇数行为栈中元素(右端可以进行插入删除),元素以逗号隔开, EMPTY表示栈为空 偶数行为进行的操作 EM…
Catalan数列是非常奇妙的一列数字,因为很多问题的解就是一个Catalan数.知道了这一规律,很多看似复杂的问题便可迎刃而解.那么什么是Catalan数,什么样的问题的解是Catalan数呢? 1,Catalan数 先来看一段Catalan数列:1,1,2,5,14,42,132,429,1430,4862,16796,即 h(0)=1,h(1)=1,h(2)=2,h(3)=5... 怎么求出来的呢?两种方式 (1) h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-…
Trees Made to Order Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7155   Accepted: 4094 Description We can number binary trees using the following scheme: The empty tree is numbered 0. The single-node tree is numbered 1. All binary tre…
如何让孩子爱上打表 Catalan数 Catalan数是组合数学中一个常出现在各种计数问题中的数列. 以比利时的数学家欧仁·查理·卡塔兰 (1814–1894)的名字来命名. 先丢个公式(设第n项为$h_n$): $h_n=h_0*h_{n-1}+h_1*h_{n-2}+...+h_{n-1}*h_0,(n \ge 2)$ $h_n=\frac{h_{n-1}*(4n-2)}{n+1}$ $h_n=C_{2n}^n-C_{2n}^{n-1}=\frac{C_{2n}^n}{n+1}$ 应用 出栈…
应用一: codevs 3112 二叉树计数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold   题目描述 Description 一个有n个结点的二叉树总共有多少种形态 输入描述 Input Description 读入一个正整数n 输出描述 Output Description 输出一个正整数表示答案 样例输入 Sample Input 6 样例输出 Sample Output 132 数据范围及提示 Data Size & Hint 1<=n&l…
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到Catalan数,但是我却花了两个小时去找递推式. 首先 Catalan数 : 基本规律:1,2,5,14,42,132,.......... 典型例题: 1.多边形分割.一个多边形分为若干个三角形有多少种分法. C(n)=∑(i=2...n-1)C(i)*C(n-i+1) 2.排队问题:转化为n个人…
Catalan数 [参考网址]http://www.cnblogs.com/gongxijun/p/3232682.html 记得当时我们队写过一个,差点超时,现在找到了公式,感觉还是挺简单的. 还要注意,就算开long long 也只能表示到第33个,之后就会溢出. &代码: void Solve() { f[1]=1; for(int i=2;i<40;i++){ f[i]=f[i-1]*(4*i-2)/(i+1); } PIar(f,40) } 输出数据在下面,也很显然,33之后就变成…
令h(1)=1, h(0)=1,catalan数满足递归式: h(n)=h(0)*h(n-1)+h(1)*h(n-2)+...+h(n-1)h(0) (n>=2) =C(2n, n)/(n+1) =h(n-1)*2(2n-1)/(n+1) 具体推导请百度,这里只需记得推导公式为h(n)=h(n-1)*2(2n-1)/(n+1)即可. 我们来说说这个的应用吧,从catalan数的定义递归定义可以看出,它是由自己 本身的一部分和n减去一部分 的和得到的,也就是说,有n个物品,1个物品进行操作1,n-…