首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
Singer House CodeForces - 830D (组合计数,dp)
】的更多相关文章
Singer House CodeForces - 830D (组合计数,dp)
大意: 一个$k$层完全二叉树, 每个节点向它祖先连边, 就得到一个$k$房子, 求$k$房子的所有简单路径数. $DP$好题. 首先设$dp_{i,j}$表示$i$房子, 分出$j$条简单路径的方案数, 那么最终答案就为$dp_{i,1}$. 考虑两棵$i-1$房子转移到$i$房子的情况, 分四种情况. 两个子树间不与根节点连边, 那么$dp_{i,j+k}=\sum dp_{i-1,j}dp_{i-1,k}$ 两个子树只有一条路径与根节点连边, $dp_{i,j+k}=\sum dp_{i-…
[ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有多少是Magic的,答案可能很大,只能输出模P以后的值 输入输出格式 输入格式: 输入文件的第一行包含两个整数 n和p,含义如上所述. 输出格式: 输出文件中仅包含一个整数,表示计算1,2,⋯, 的排列中, Magic排列的个数模 p的值. 输入输出样例 输入样例#1: 20 23 输出样例#1: 16 说明…
BZOJ1079 [SCOI2008]着色方案[组合计数DP]
$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体变化,用整体法(没错就是和物理那种差不多). 推dp方程时怕边界问题不好处理时可以采用向前推的方法,就如$f[x]=f[i]+...$,可以(部分)避免越界. 我好菜啊..除了个dp状态设计对了其他什么都没写上来qwq.基于每次插入时数字的数量都不固定,所以我可以设法将其固定下来.按顺序依次插入1,2,3,.…
Codeforces 176B【计数DP】
题意: 给你两个串s1,s2和一个K, 有一种操作是在一个串切开然后交换位置, 问s1有多少种方法经过K次这样的操作变成s2: 思路: (从来没接触过计数DP...还是太菜...参考了[大牛blog] 首先呢,不管怎么切怎么换,都是原串自己转来转去有没有???看到这个其实我还是不懂.... 然后呢,我们搞一个DP数组记下数,纯粹就是计数的: dp[now][0]代表到第i步变成原串的方案数: dp[now][1]代表到第i步变成非原串的方案数: 从哪里变成原串啊?一个原串可以变成len-1个非原…
Yet Another Problem On a Subsequence CodeForces - 1000D (组合计数)
大意:定义一个长为$k>1$且首项为$k-1$的区间为好区间. 定义一个能划分为若干个好区间的序列为好序列. 给定序列$a$, 求有多少个子序列为好序列. 刚开始一直没想出来怎么避免重复计数, 看了别人题解才会. 设$dp[i]$为以$a_i$开头的个数, 枚举$a_i$所在好区间的最后一个数$j$, 有$dp[i]=\sum \binom{j-1-1}{a_i-1}\sum\limits_{k=j+1}^n dp[k]$ #include <iostream> #include <…
luoguP4492 [HAOI2018]苹果树 组合计数 + dp
首先,每个二叉树对应着唯一的中序遍历,并且每个二叉树的概率是相同的 这十分的有用 考虑\(dp\)求解 令\(f_i\)表示\(i\)个节点的子树,根的深度为\(1\)时,所有点的期望深度之和(乘\(i!\))的值 令\(g_i\)表示\(i\)个节点的子树,期望两两路径之和(乘\(i!\))的值 那么\(f_i = i * i! + \sum \limits_{L = 0}^{i - 1} \binom{i - 1}{L} (f_L * R! + f_R * L!)\),\(L, R\)分别表…
Intercity Travelling CodeForces - 1009E (组合计数)
大意: 有一段$n$千米的路, 每一次走$1$千米, 每走完一次可以休息一次, 每连续走$x$次, 消耗$a[1]+...+a[x]$的能量. 休息随机, 求消耗能量的期望$\times 2^{n-1}$. 简单计数题, 枚举每种长度的贡献. #include <iostream> #include <algorithm> #include <cstdio> #define REP(i,a,n) for(int i=a;i<=n;++i) using namesp…
hdu4779 组合计数+dp
提交 题意:给了n*m的网格,然后有p个重型的防御塔,能承受1次攻击,q个轻型防御塔不能接受任何攻击,然后每个防御搭会攻击他所在的行和所在的列,最后求在这个网格上放至少一个防御塔的方案数, 我们枚举 选取多少个重型防御塔然后这个重型防御塔有多少是两个在一行,和两个在一列 O(P^3)的效率 #include <iostream> #include <algorithm> #include <cstdio> #include <string.h> #inclu…
Anton and School - 2 CodeForces - 785D (组合计数,括号匹配)
大意: 给定括号字符串, 求多少个子序列是RSGS. RSGS定义如下: It is not empty (that is n ≠ 0). The length of the sequence is even. First $\frac{n}{2}$ charactes of the sequence are equal to "(". Last $\frac{n}{2}$ charactes of the sequence are equal to ")". 枚举…
Different Subsets For All Tuples CodeForces - 660E (组合计数)
大意: 定义$f(a)$表示序列$a$本质不同子序列个数. 给定$n,m$, 求所有长$n$元素范围$[1,m]$的序列的$f$值之和. 显然长度相同的子序列贡献是相同的. 不考虑空串, 假设长$x$, 枚举第一次出现位置, 可以得到贡献为$\sum\limits_{i=x}^n\binom{i-1}{x-1}(m-1)^{i-x}m^{n-i}$ 总的答案就为$\sum\limits_{x=1}^n m^x \sum\limits_{i=x}^n\binom{i-1}{x-1}(m-1)^{i…