本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! 参数初始化(Initializations) 这个模块的作用是在添加layer时调用init进行这一层的权重初始化,有两种初始化方法,以下为样例: model.add(Dense(64, init='uniform')) 可以选择的初始化方法有:            uniform.lecun_uniform.normal.orthogonal.zero.glorot_normal.he_normal等 对象调用 该对象必须包…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! model层是keras模块最重要的一个层,所以单独做下笔记,这块比较难理解,本博主自己还在学习这块,还在迷糊中. model的方法: model.summary() : 打印出模型概况 model.get_config() :返回包含模型配置信息的Python字典 model.get_weights():返回模型权重张量的列表,类型为numpy array model.set_weights():从numpy array里将权…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! keras的层主要包括: 常用层(Core).卷积层(Convolutional).池化层(Pooling).局部连接层.递归层(Recurrent).嵌入层( Embedding).高级激活层.规范层.噪声层.包装层,当然也可以编写自己的层 对于层的操作 layer.get_weights() #返回该层的权重 layer.set_weights(weights)#将权重加载到该层 config = layer.get_con…
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! Keras泛型模型接口是:  用户定义多输出模型.非循环有向模型或具有共享层的模型等复杂模型的途径  适用于实现:全连接网络和多输入多输出模型  多输入多输出,官方例子给出:预测一条新闻的点赞转发数,主要输入是新闻本身,还可以加入额外输入,比如新闻发布日期,新闻作者等,具体的实现还是看官网文档吧: http://keras-cn.readthedocs.io/en/latest/getting_started/functiona…
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! Sequential是多个网络层的线性堆叠 可以通过向Sequential模型传递一个layer的list来构造该模型: from keras.models import Sequential from keras.layers import Dense, Activation model = Sequential([ Dense(32, input_dim=784), Activation('relu'), Dense(10)…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! 每一个神经网络层都需要一个激活函数,例如一下样例代码: from keras.layers.core import Activation, Dense model.add(Dense(64)) model.add(Activation('tanh')) 或把上面两行合并为: model.add(Dense(64, activation='tanh')) 可以选择的激活函数有: linear.sigmoid.hard_sigmoi…
本笔记由博客园-圆柱模板 博主整理笔记发布,转载需注明,谢谢合作! 目标函数又称损失函数(loss),目的是计算神经网络的输出与样本标记的差的一种方法,如: model = Sequential() model.add(Dense(64, init='uniform', input_dim=10)) model.add(Activation('tanh')) model.add(Activation('softmax')) sgd = SGD(lr=0.01, decay=1e-6, momen…
package swust.edu.cn.postdoctors.service.impl; import java.util.Arrays; import java.util.Collection; import org.junit.Before; import org.junit.Test; import org.junit.runner.RunWith; import org.junit.runners.Parameterized; import org.junit.runners.Par…