Ablation Study】的更多相关文章

We often come across 'ablation study' in machine learning papers, for example, in this paper with the original R-CNN, it has a section of ablation studies. But what does this means? Well, we know that when we build a model, we usually have different…
Visualizing and understandingConvolutional Networks 本文是Matthew D.Zeiler 和Rob Fergus于(纽约大学)13年撰写的论文,主要通过Deconvnet(反卷积)来可视化卷积网络,来理解卷积网络,并调整卷积网络:本文通过Deconvnet技术,可视化Alex-net,并指出了Alex-net的一些不足,最后修改网络结构,使得分类结果提升. 摘要: CNN已经获得很好的结果,但是并没有明确的理解为什么CNN会表现的这么好,或者…
原文地址:https://arxiv.org/pdf/1708.01241 DSOD:从零开始学习深度有监督的目标检测器 Abstract摘要: 我们提出了深入的监督对象检测器(DSOD),一个框架,可以从零开始学目标探测器.艺术对象的对象的状态在很大程度上依赖于下架网络预培训的大规模数据分类如ImageNet,造成学习偏差由于双方的损失函数和分类和检测任务之间的类别分布的差异.对检测任务进行模型微调可以在一定程度上缓解这种偏见,但不能从根本上消除这种偏见.此外,将经过训练的模型从分类转移到差异…
------------------------------------------------------------------------------------------------------------------------------------------------------------------- 译文 摘要:在深度卷积网络(ConvNet)的帮助下,边缘检测已经取得了重大进展.基于ConvNet的边缘检测器在标准基准测试中达到了人类水平.我们提供了对于这些检测器输出…
Spatial As Deep: Spatial CNN for Traffic Scene Understanding 收录:AAAI2018 (AAAI Conference on Artificial Intelligence) 原文地址:SCNN 论文提出了一个新颖网络Spatial CNN,在图片的行和列上做信息传递.可以有效的识别强先验结构的目标.论文提出了一个大型的车道检测数据集,用于进一步推动自动驾驶发展. 代码: 官方-torch Abstract 现今的CNN模型通常是由卷积…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #042eee } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 13.0px "Helvetica Neue"; color: #323333 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 15.0px "…
概述 虽然CNN深度卷积网络在图像识别等领域取得的效果显著,但是目前为止人们对于CNN为什么能取得如此好的效果却无法解释,也无法提出有效的网络提升策略.利用本文的反卷积可视化方法,作者发现了AlexNet的一些问题,并在AlexNet基础上做了一些改进,使得网络达到了比AlexNet更好的效果.同时,作者用"消融方法"(ablation study)分析了图片各区域对网络分类的影响(通俗地说,"消融方法"就是去除图片中某些区域,分析网络的性能). 反卷积神经网络(D…
The Evolved Transformer - Enhancing Transformer with Neural Architecture Search 2019-03-26 19:14:33   Paper:"The Evolved Transformer." So, David R., Chen Liang, and Quoc V. Le.  arXiv preprint arXiv:1901.11117 (2019).  Code: https://github.com/t…
Dual Attention Network for Scene Segmentation 原始文档 https://www.yuque.com/lart/papers/onk4sn 在本文中,我们通过 基于自我约束机制捕获丰富的上下文依赖关系来解决场景分割任务. 与之前通过多尺度特征融合捕获上下文的工作不同,我们提出了一种双重注意网络(DANet)来自适应地集成局部特征及其全局依赖性. 具体来说,我们在传统的扩张FCN之上附加两种类型的注意力模块,它们分别对空间和通道维度中的语义相互依赖性进行…
BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding 谷歌AI语言组论文<BERT:语言理解的深度双向变换器预训练>,介绍一种新的语言表征模型BERT——来自变换器的双向编码器表征量.异于最新语言表征模型,BERT基于所有层的左.右语境来预训练深度双向表征量.BERT是首个大批句子层面和词块层面任务中取得当前最优性能的表征模型,性能超越许多使用任务特定架构的系统,刷新11项NLP任务当前最…