之前介绍了这么多分类模型的性能评价指标(<分类模型的性能评价指标(Classification Model Performance Evaluation Metric)>),那么到底应该选择哪些指标来评估自己的模型呢?答案是应根据应用场景进行选择. 查全率(Recall):recall是相对真实的情况而言的:假设测试集里面有100个正类,如果模型预测出其中40个是正类,那模型的recall就是40%.查全率也称为召回率,等价于灵敏性(Sensitivity)和真正率(True Positive…
医学.机器学习等等,在统计结果时时长会用到这两个指标来说明数据的特性. 定义 敏感性:在金标准判断有病(阳性)人群中,检测出阳性的几率.真阳性.(检测出确实有病的能力) 特异性:在金标准判断无病(阴性)人群中,检测出阴性的几率.真阴性.(检测出确实没病的能力) 假阳性率:得到了阳性结果,但这个阳性结果是假的.即在金标准判断无病(阴性)人群中,检测出为阳性的几率.(没病,但却检测结果说有病),为误诊率. 假阴性率:得到了阴性结果,但这个阴性结果是假的.即在金标准判断有病(阳性)人群中,检测出为阴性…
准确率.精确率(查准率).召回率(查全率).F1值.ROC曲线的AUC值,都可以作为评价一个机器学习模型好坏的指标(evaluation metrics),而这些评价指标直接或间接都与混淆矩阵有关,前四者可以从混淆矩阵中直接计算得到,AUC值则要通过ROC曲线进行计算,而ROC曲线的横纵坐标又和混淆矩阵联系密切,所以在了解这些评价指标之前,先知道什么是混淆矩阵很有必要,也方便记忆. 1.混淆矩阵 对于一个二分类问题,我们可以得到如表 1所示的的混淆矩阵(confusion matrix): 表…
1. Precision和Recall Precision,准确率/查准率.Recall,召回率/查全率.这两个指标分别以两个角度衡量分类系统的准确率. 例如,有一个池塘,里面共有1000条鱼,含100条鲫鱼.机器学习分类系统将这1000条鱼全部分类为“不是鲫鱼”,那么准确率也有90%(显然这样的分类系统是失败的),然而查全率为0%,因为没有鲫鱼样本被分对.这个例子显示出一个成功的分类系统必须同时考虑Precision和Recall,尤其是面对一个不平衡分类问题. 下图为混淆矩阵,摘自wiki百…
本文首先从整体上介绍ROC曲线.AUC.Precision.Recall以及F-measure,然后介绍上述这些评价指标的有趣特性,最后给出ROC曲线的一个Python实现示例. 一.ROC曲线.AUC.Precision.Recall以及F-measure 二分类问题的预测结果可能正确,也可能不正确.结果正确存在两种可能:原本对的预测为对,原本错的预测为错:结果错误也存在两种可能:原本对的预测为错,原本错的预测为对,如Fig 1左侧所示.其中Positives代表预测是对的,Negatives…
原文链接:https://blog.csdn.net/weixin_42518879/article/details/83959319 主要内容:机器学习中常见的几种评价指标,它们各自的含义和计算(注意本文针对二元分类器!) 1.混淆矩阵 True Positive(真正,TP):将正类预测为正类的数目 True Negative(真负, TN):将负类预测为负类的数目 False Positive(假正,FP):将负类预测为正类的数目(Type I error) False Negative(…
背景   之前在研究Object Detection的时候,只是知道Precision这个指标,但是mAP(mean Average Precision)具体是如何计算的,暂时还不知道.最近做OD的任务迫在眉睫,所以仔细的研究了一下mAP的计算.其实说实话,mAP的计算,本身有很多现成的代码可供调用了,公式也写的很清楚,但是我认为仔细的研究清楚其中的原理更重要.   AP这个概念,其实主要是在信息检索领域(information retrieval)中的概念,所以这里会比较快速的过一下这个在信息…
[计算机视觉]目标检测中的指标衡量Recall与Precision 标签(空格分隔): [图像处理] 说明:目标检测性能指标Recall与Precision的理解. Recall与Precision 其实道理非常朴素: Precision就是精度,以行人检测为例,精度就是检测出来的行人中确实是行人的所占的百分比,也就是所谓的检测精度,可以提供给客户看,我们的检测精度是100%,也就是没有虚景,没有false positive: Recall就是正确检出的行人数量占行人总数的百分比,Recall=…
作为机器学习重要的评价指标,标题中的三个内容,在下面读书笔记里面都有讲: http://www.cnblogs.com/charlesblc/p/6188562.html 但是讲的不细,不太懂.今天又理解了一下.看了这篇文章: https://www.douban.com/note/247271147/?type=like 讲的很好. 都是基于这张图,先贴一下: PR Precision-Recall曲线,这个东西应该是来源于信息检索中对相关性的评价吧,precision就是你检索出来的结果中,…
医学.机器学习等等,在统计结果时时长会用到这两个指标来说明数据的特性.…