题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={I1,I2,…In}.实验Ej需要用到的仪器是I的子集RjÍI.配置仪器Ik的费用为ck美元.实验Ej的赞助商已同意为该实验结果支付pj美元.W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大.这里净收益是指进行实验所获得的全部…
P2762 太空飞行计划问题 题目背景 题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={I1,I2,…In}.实验Ej需要用到的仪器是I的子集RjÍI.配置仪器Ik的费用为ck美元.实验Ej的赞助商已同意为该实验结果支付pj美元.W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益…
Luogu 2762 太空飞行计划 / Libre 6001 「网络流 24 题」太空飞行计划 (网络流,最大流) Description W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,-,Em},和进行这些实验需要使用的全部仪器的集合I={ I1, I2,-,In }.实验Ej 需要用到的仪器是I的子集Rj∈I. 配置仪器Ik 的费用为ck 美元.实验Ej 的赞助商已同意为该实验结果支付pj 美元…
洛谷 P2762 太空飞行计划问题 P3410 拍照[最大权闭合子图]题解+代码 最大权闭合子图 定义: 如果对于一个点集合,其中任何一个点都不能到达此集合以外的点,这就叫做闭合子图.每个点都有一个权值,那么最大权闭合子图就是权值最大的那个闭合子图. (或者说对于一个点集,这个点集中所有点的出边所指向的点都在此点集中) 求解 超级源点向每个权值为正的点连边,容量为该点权值 每个点权为负的点向超级汇点连边,容量为该点权值相反数 原图中的变,容量为inf 然后跑最小割(最大流) 最后用正点权的总和-…
题目描述 W 教授正在为国家航天中心计划一系列的太空飞行.每次太空飞行可进行一系列商业性实验而获取利润.现已确定了一个可供选择的实验集合E={E1,E2,…,Em},和进行这些实验需要使用的全部仪器的集合I={I1,I2,…In}.实验Ej需要用到的仪器是I的子集RjÍI.配置仪器Ik的费用为ck美元.实验Ej的赞助商已同意为该实验结果支付pj美元.W教授的任务是找出一个有效算法,确定在一次太空飞行中要进行哪些实验并因此而配置哪些仪器才能使太空飞行的净收益最大.这里净收益是指进行实验所获得的全部…
题目链接:https://www.luogu.org/problemnew/show/P2762 算是拍照那个题的加强下. 输入真的很毒瘤.(都这么说但好像我的过了?) #include <queue> #include <cstdio> #include <cstring> #include <iostream> #include <algorithm> #define ll long long using namespace std; con…
https://www.luogu.org/problemnew/show/P4174 最大权闭合子图的模板 每个通讯站建一个点,点权为-Pi:每个用户建一个点,点权为Ci,分别向Ai和Bi对应的点连边:然后就可以跑了 方法是: 建新源S和新汇T,从S向所有正权点连边,容量为点权值:从所有负权点向T连边,容量为点权值的相反数:原图中所有边容量设为无穷大 跑S到T最大流 原因:(网上都有,自己研究的也不知道有没有偏差) 找出图的任意一个割,其中: 显然不可能割掉容量为无穷大的边: 割掉一条S到u的…
好像是最大权闭合图,也就是最大流最小割啦,找出最大流的路径输出,这题如何建模呢,一样的先设源点和汇点,源点向每个计划连capacity为赞助数的边,每个计划连相应装置capacity为无穷的边,每个装置向汇点连capacity为支付费用的边,这样,最大利润就是赞助总数-最大流啦,如何证?看两个例子 若是可行方案,相减即为利润,若是不可行方案,相减就为0,数学归纳法可推知n个时也对 另一个问题,如何找到最大权闭合图呢,最后一次分层的level数组就可以帮忙了,我们知道退出dinic算法就是无法到达…
这题套路好深......没想渠. 题意:给你若干个设备,若干个任务. 每个任务需要若干设备,设备可重复利用. 完成任务有钱,买设备要钱. 问最大总收益(可以什么任务都不做). 解:最大权闭合子图. 对于一个有向图,如果选择了一个点,那么就要选择它的所有后继节点.求最大权值和. 建立s,t,记所有正权值和为sum. s向所有权值为正的点连边,流量为权值. 所有权值为负的点向t连边,流量为权值的绝对值. 对于所有边,建立流量INF的边. 答案即为sum - 最小割. 证明: 你割的边显然只能与s或t…
题目链接 woc这题目的输入格式和输出格式真的恶心 首先我们就着样例讲一下闭合图 如图所示,第一层是两个实验节点,带来正收益:第二层是三个仪器节点,带来负收益:问讲道理到终点可以获得多大收益. 闭合图是什么呢?闭合图是一个点集,这个点集中所有点的出边所指向的点都必须在闭合图中.我们用点权来表示点的话,比如点集{10,-5,-6,终点}就是个闭合图,然而{10,25}就不是. 然后这题显而易见的叫我们求出最大权闭合图. 于是我们可以把它变成这样一个图: 如图,从源点到每个正点权点连一条容量为点权的…