http://lightoj.com/volume_showproblem.php?problem=1282 Leading and Trailing Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu Submit Status Practice LightOJ 1282 Description You are given two integers: n and k, your task is t…
链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. 思路: 后三位快速幂取余,考虑前三位. \(n^k\)可以表示为\(a*10^m\)即使用科学计数法. 对两边取对数得到\(k*log…
Leading and Trailing You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. Input Input starts with an integer T (≤ 1000), denoting the number of test cases. Each case st…
1282 - Leading and Trailing You are given two integers: n and k, your task is to find the most significant three digits, and least significant three digits of nk. Input Input starts with an integer T (≤ 1000), denoting the number of test cases. Each…
(1)开long long,不然中间结果会溢出 (2)注意一开始的初始化,保险一点. #include<cstdio> #include<cctype> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; typedef…
题目链接:https://vjudge.net/problem/LightOJ-1282 1282 - Leading and Trailing PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB You are given two integers: n and k, your task is to find the most significant three digits, and le…
快速幂算法可以说是ACM一类竞赛中必不可少,并且也是非常基础的一类算法,鉴于我一直学的比较零散,所以今天用这个帖子总结一下 快速乘法通常有两类应用:一.整数的运算,计算(a*b) mod c 二.矩阵快速乘法 一.整数运算:(快速乘法.快速幂) 先说明一下基本的数学常识: (a*b) mod c == ( (a mod c) * (b mod c) ) mod c //这最后一个mod c 是为了保证结果不超过c 对于2进制,2n可用1后接n个0来表示.对于8进制,可用公式 i+3*j ==…
下面我们来看一个容易让人蒙圈的问题:N的阶乘 mod P. 51Nod 1008 N的阶乘 mod P 看到这个可能有的人会想起快速幂,快速幂是N的M次方 mod P,这里可能你就要说你不会做了,其实你会,为什么呢,只要你明白快速幂的原理,你就会发现他们两个其实差不多是同一个问题. 重要原理:积的取模=取模的积再取模. 快速幂不过是一直乘的相同的的数,这里仅仅是改成乘以不同的数而已. 题目: 输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %) 例如:n = 10, P…
题解:求一个数的次幂,然后输出前三位和后三位,后三位注意有前导0的情况. 后三位直接用快速幂取模求解. 前三位求得时候只需要稍微变形一下,可以把乘过的结果拆成用科学计数法,那么小数部分只有由前面决定,所以取前三位利用double来计算就可以了. #include <bits/stdc++.h> using namespace std; typedef long long ll; const int Mod = 1000; ll ppow(ll a, ll k) // 后三位 { ll ans…