matplotlib学习之散点图与条形图】的更多相关文章

# coding:utf-8 from matplotlib import pyplot as plt import numpy as np plt.style.use('ggplot') x = np.random.randn(200) y = x + np.random.randn(200) * 0.5 # 确定图的位置 margin_border = 0.1 width = 0.6 margin_between = 0.02 height = 0.2 left_s = margin_bor…
原   matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { backg…
Matplotlib有两种接口,一种是matlab风格接口,一种是面向对象接口.在这里,统一使用面向对象接口.因为面向对象接口可以适应更复杂的场景,在多图之间进行切换将变得非常容易. 首先导入matplotlib:from matplotlib import pyplot as plt.plt是最常用的接口. 一. 创建图像和坐标轴 fig=plt.figure()   ---   创建图像 ax=plt.axes()   ---   创建坐标轴 在matplotlib中,可以把figure看成…
matplotlib 学习总结 作者:csj更新时间:01.09 email:59888745@qq.com 说明:因内容较多,会不断更新 xxx学习总结: 回主目录:2017 年学习记录和总结 # matplotlib 及环境配置 # 数据图的组成结构,与 matplotlib 对应的名称 # 常见的数据绘图类型,与绘制方法 # 您可能需要以下的准备与先修知识: # Python开发环境及matplotlib工具包 # Python基础语法 # Python numpy 包使用 # 一幅数据图…
原  Matplotlib学习笔记 参考:Python数据科学入门教程 Python3.6.1 jupyter notebook .caret, .dropup > .btn > .caret { border-top-color: #000 !important; } .label { border: 1px solid #000; } .table { border-collapse: collapse !important; } .table td, .table th { backgr…
箱线图通过数据的四分位数来展示数据的分布情况.例如:数据的中心位置,数据间的离散程度,是否有异常值等. 把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)分别为数据的第25%,50%和75%的数字. I-------------I o I-------------I o I-------------I o I-------------I Q1                Q2                 Q3 (lower quartile) …
直方图用于展示数据的分布情况,x轴是一个连续变量,y轴是该变量的频次. 下面利用Nathan Yau所著的<鲜活的数据:数据可视化指南>一书中的数据,学习画图. 数据地址:http://datasets.flowingdata.com/crimeRatesByState2005.csv 以下是这个数据文件的前5行: state murder forcible_rape robbery aggravated_assault \ 0 United States 5.6 31.7 140.7 291…
Matplotlib里有两种画散点图的方法,一种是用ax.plot画,一种是用ax.scatter画. 一. 用ax.plot画 ax.plot(x,y,marker="o",color="black") 二. 用ax.scatter画 ax.scatter(x,y,marker="o",s=sizes,c=colors) ax.plot和ax.scatter的区别: ax.plot:各散点彼此复制,因此整个数据集中所有的点只需配置一次颜色和大小…
一.折线图 二.散点图 三.条形图 四.直方图 五.饼图 一.折线图折线图用于显示随时间或有序类别的变化趋势 from matplotlib import pyplot as plt x = range(2, 26, 2) y = [15, 13, 14.5, 17, 20, 25, 26, 26, 27, 22, 18, 15] # 设置图片大小 plt.figure(figsize=(20, 8), dpi=180) # 绘制图形,plot折线图 plt.plot(x, y) # 保存图形…
对比常用统计图 折线图: 特点:能够显示数据的变化趋势,反映事物的变化情况.(变化) 直方图: 特点:绘制连续性的数据,展示一组或者多组数据的分布情况(统计) 条形图: 特点:绘制离散的数据,能够一眼看出各个数据的大小,比较数据之间的差距(统计) 散点图: 特点:判断变量之间是否存在数量关联趋势,展示离群点(分布规律) 绘制散点图(plt.scatter) 假设通过爬虫你获取到了北京2016年3,10月份每天白天的最高气温(分别位于列表a,b),那么此时如何寻找出气温和随时间(天)变化的某种规律…