Havel-Hakimi定理 当年一度热门出如今ACM赛场上的算法. 算法定义: Havel-Hakimi定理主要用来判定一个给定的序列是否是可图的. 2.首先介绍一下度序列:若把图 G 全部顶点的度数排成一个序列 S,则称 S 为图 G 的度序列. 3.一个非负整数组成的有限序列假设是某个无向图的序列,则称该序列是可图的. 4.判定过程:(1)对当前数列排序,使其呈递减,(2)从S[2]開始对其后S[1]个数字-1,(3)一直循环直到当前序列出现负数(即不是可图的情况)或者当前序列全为0 (可…
原文链接 首先说说格林公式(Green's theorem).对于一段封闭曲线,若其围城的区域D为单连通区域(内部任意曲线围城的区域都属于院区域),则有如下公式: 其中其中L为D的边界,取正方向.如果沿着L前进,左边是D的内部区域,那么此时的L定义为正方向. 利用格林公式求面积的方法:曲线围成的区域的面积为: 格林是十八世纪英国自学成才的数学家,他只上过一年学.1828年格林三十五岁的时候,把他当时对数学的研究写成小册子分发给民众.五年后,在一位乡野数学家的帮助下,他得以进入了剑桥大学学习.但是…
Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$,定义函数$$\psi_{n}(z)=\sum_{j=1}^{k_{n}}\frac{c_{n,j}}{(z-a_{n})^j},n\in\mathbb N$$ 则必存在$D$上的亚纯函数$f(z)$使得$f$以$\{a_{n}\}$为其极点集,且在每个$a_{n}$附近的Laurent展开式的主要部…
科技行业流传着很多关于比尔·盖茨的故事,其中一个是他和通用汽车公司老板之间的对话.盖茨说,如果汽车工业能够像计算机领域一样发展,那么今天,买一辆汽车只需要 25 美元,一升汽油能跑四百公里.通用汽车老板反击盖茨的话我们暂且不论,这个故事至少说明计算机和整个 IT行业的发展比传统工业要快得多. 最早看到这个现象的是英特尔公司的创始人戈登·摩尔(Gordon Moore)博士.早在 1965 年,他就提出,在至少十年内,集成电路的集成度会每两年翻一番.后来,大家把这个周期缩短到十八个月.现在,每十八…
[题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=2454 [别人博客粘贴过来的] 博客地址:https://www.cnblogs.com/debugcool/archive/2011/04/23/HDOJ2454.html 一句话,顶点的度序列 Havel 定理~ 定义:给出一个无向图的顶点度序列 {dn},要求判断能否构造出一个简单无向图. 分析: 贪心的方法是每次把顶点按度大小从大到小排序,取出度最大的点Vi,依次和度较大的那些顶点Vj连接…
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合,G为Sn的置换群,C为Sn的着色集.那么我们等于是要求C中有多少种着色方案是不等价的.定义两种着色等价的概念:如果对于在C中的两种着色c1.c2,存在置换f使得f*c1=c2,那么c1和c2就是等价的.要想求不等价着色的个数,我们要先证明一个定理,即:         Burnside定理:设G(c…
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds memory limit per test 256 megabytes input standard input output standard output Devu wants to decorate his garden with flowers. He has purchased n boxes…
#include <cstdio> int main() { // freopen("in.txt","r",stdin); ; while(scanf("%d%d%d%d",&p,&e,&i,&d)) { && e == - && i == - && d== -) break; ,m2 = ,m3 = ; const int M1 = m2*m3, M2…
众所周知,对一个$n$阶方阵求取特征值需要解一个一元$n$次方程,当$n$很大时,这是很难实现的.但是,在有些涉及矩阵的实际问题中,我们并不需要知道矩阵特征值的准确值,而只需要知道其大概范围就行了,例如判定一个线性系统最终是否会趋于稳定时,只需要看其特征方程的所有特征根是否均有负实部,即所有的特征根是否均落在$x$轴负半轴上就行了:判定一个$n$阶方阵是否半正定,只需要考察其所有特征值是否均非负,类似的例子还有很多,就不一一赘述了.那么对于这类问题,我们迫切地需要这样一个工具,相比于解$n$次的…
一.分布式领域CAP理论 CAP定理指在设计分布式系统时,一致性(Consistent).可用性(Availability).可靠性(分区容忍性Partition Tolerance)三个属性不可能同时满足,该定理也叫做布鲁尔定理.CAP定理明确了分布式系统所能实现系统的局限性,目前互联网中的很多分布式系统是基于首要满足可用性和分区容忍性而设计的. 在一系列的研究结果里发现,在较大型的分布式系统中,由于网络分隔,一致性与可用性不能同时满足,这意味着这三个要素只能同时实现两个,不可能三者兼顾:放宽…