1.学习单步的RNN:RNNCell.BasicRNNCell.BasicLSTMCell.LSTMCell.GRUCell (1)RNNCell 如果要学习TensorFlow中的RNN,第一站应该就是去了解“RNNCell”,它是TensorFlow中实现RNN的基本单元,每个RNNCell都有一个call方法,使用方式是:(output, next_state) = call(input, state). 借助图片来说可能更容易理解.假设我们有一个初始状态h0,还有输入x1,调用call(…
1. Notations 循环序列模型的输入和输出都是时间序列.$x^{(i)<t>}$表示第$i$个输入样本的第$t$个元素,$T_x^{(i)}$表示输入的第$i$个样本的元素个数:$y^{(i)<t>}$表示第$i$个样本的输出的第$t$个元素,$T_y^{(i)}$表示第$i$个样本的输出的元素个数. 在NLP领域,为了描述一句话,会有一个词典(vocabulary),里面保存了所有的英文单词(一般包含3万到5万单词),每个单词依次有一个编号.这样每个单词都可以用一个向量表…
前言: 作为一个深度学习的重度狂热者,在学习了各项理论后一直想通过项目练手来学习深度学习的框架以及结构用在实战中的知识.心愿是好的,但机会却不好找.最近刚好有个项目,借此机会练手的过程中,我发现其实各大机器学习以及tensorflow框架群里的同学们也有类似的问题.于是希望借项目之手分享一点本人运行过程中的理解以及经验,希望在有益大家工作的基础上抛砖引玉,得到行业内各位专业人士的批评指点,多谢大家支持! 第一章博客我将会分为两个部分,这一部分将讲述Word2Vec在tensorflow中官方提供…
摘自https://www.cnblogs.com/pinard/p/6519110.html 一.RNN回顾 略去上面三层,即o,L,y,则RNN的模型可以简化成如下图的形式: 二.LSTM模型结构: 整体模型: 由于RNN梯度消失的问题,大牛们对于序列索引位置t的隐藏结构做了改进,可以说通过一些技巧让隐藏结构复杂了起来,来避免梯度消失的问题,这样的特殊RNN就是我们的LSTM.由于LSTM有很多的变种,这里我们以最常见的LSTM为例讲述.LSTM的结构如下图: 记忆细胞: 从上图中可以看出,…
#RNN 循环神经网络 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data tf.set_random_seed(1) # set random seed # 导入数据 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # hyperparameters lr = 0.001 # learning rate t…
模型构建 1.示例代码linear_regression_model.py #!/usr/bin/python # -*- coding: utf-8 -* import tensorflow as tf import numpy as np class linearRegressionModel: def __init__(self,x_dimen): self.x_dimen = x_dimen self._index_in_epoch = 0 self.constructModel() s…
代码函数详解 tf.random.truncated_normal()函数 tf.truncated_normal函数随机生成正态分布的数据,生成的数据是截断的正态分布,截断的标准是2倍的stddev. zip()函数 zip() 函数用于将可迭代对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的对象.如果各个可迭代对象的元素个数不一致,则返回的对象长度与最短的可迭代对象相同.利用 * 号操作符,与zip相反,进行解压. import tensorflow as tf i…
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1-3.jpg 表示 分值为3 的第3 张图. 你可以把符合这个格式的图片放在 resize_images 来训练模型. 模型 人脸打分基于 TensorFlow 的 CNN 模型 代码参考 : https://github.com/aymericdamien/TensorFlow-Examples/b…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
参考1 参考2 参考3 1. 为什么选择序列模型 序列模型能够应用在许多领域,例如: 语音识别 音乐发生器 情感分类 DNA序列分析 机器翻译 视频动作识别 命名实体识别 这些序列模型都可以称作使用标签数据(X,Y)作为训练集的监督式学习,输入x和输出y不一定都是序列模型.如果都是序列模型的话,模型长度不一定完全一致. 2. Notation(标记) 下面以 命名实体识别 为例,介绍序列模型的命名规则.示例语句为: Harry Potter and Hermione Granger invent…