定理: 任何正整数n等于其因数的欧拉函数值之和,即∑d|nφ(d)=n 证明: 设一个集合{1/n,2/n,3/n,...,(n-1)/n,n/n} 对于上述的分式集合,若我们都将其化简至最简形式,设其中一个最简形式是a/b,那么我们一定有: b|n ① (a,b)=1 ② a<=b ③ 由②③可得,对于一个确定的b,它对应的a的个数为φ(b)(根据欧拉函数的定义:φ(n)=1到n中与n互质的数的个数) 那么我们再考虑,每一个最简形式a/b都是互相不同的,因为它们都是最简形式 而且,对于上述分数…
归档. 试证明:\(\sum \limits _{d | x} \varphi (d) = x\) Lemma 1. 试证明:\(\sum \limits _{d | p^k} \varphi (d) = p ^k\),其中 \(p\) 为质数. 证明:显然,和 \(n\) 不互质的数一定含有 \(p\) 因子,而在 \([1, n]\) 中总共有 \(\lfloor \frac {n} {p} \rfloor = p ^{k - 1}\) 个含 \(p\) 因子的数,故可知 \(\varphi…
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然数x满足x<n,gcd(x,n)=1等价于gcd(x,y)=1 成立,则该式显然成立,下面证明这个命题. 假设gcd(x,y)=1时,gcd(x,n)=k!=1,则n=n'k,x=x'k,gcd(x,y)=gcd(x,n-x)=gcd(x'k,(n'-x')k)=k,与假设gcd(x,y)=1不符,…
题目链接 先看题目中给的函数f(n)和g(n) 对于f(n),若自然数对(x,y)满足 x+y=n,且gcd(x,y)=1,则这样的数对对数为f(n) 证明f(n)=phi(n) 设有命题 对任意自然数x满足x<n,gcd(x,n)=1等价于gcd(x,y)=1 成立,则该式显然成立,下面证明这个命题. 假设gcd(x,y)=1时,gcd(x,n)=k!=1,则n=n'k,x=x'k,gcd(x,y)=gcd(x,n-x)=gcd(x'k,(n'-x')k)=k,与假设gcd(x,y)=1不符,…
Send a Table Input: Standard Input Output: Standard Output When participating in programming contests, you sometimes face the following problem: You know how to calcutale the output for the given input values, but your algorithm is way too slow to ev…
bzoj[2818]Gcd Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 HINT hint对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 题解一(自己yy) phi[i]表示与x互质的数的个数 即gcd(x,y)=1 1<=y<x ∴对于x,y 若a为素数 则gcd(xa,…
我是知道φ(n)=n-1,n为质数  的,然后给的样例在纸上一算,嗯,好像是找往上最近的质数就行了,而且有些合数的欧拉函数值还会比比它小一点的质数的欧拉函数值要小,所以坚定了往上找最近的质数的决心——不过11往上最近的质数是13,不能包括本身. 这样胡来居然AC了,但是之后还是老老实实地去看别人怎么做. 把代码贴出来供后来人观赏: #include<cstdio> #include<cstring> #include<vector> using namespace st…
欧拉函数 :欧拉函数是数论中很重要的一个函数,欧拉函数是指:对于一个正整数 n ,小于 n 且和 n 互质的正整数(包括 1)的个数,记作 φ(n) . 完全余数集合:定义小于 n 且和 n 互质的数构成的集合为 Zn ,称呼这个集合为 n 的完全余数集合. 显然 |Zn| =φ(n) . 有关性质:对于素数 p ,φ(p) = p -1 .对于两个不同素数 p, q ,它们的乘积 n = p * q 满足 φ(n) = (p -1) * (q -1)  .这是因为 Zn = {1, 2, 3,…
随笔 - 20  文章 - 0  评论 - 73 ACM数论之旅7---欧拉函数的证明及代码实现(我会证明都是骗人的╮( ̄▽ ̄)╭) https://blog.csdn.net/chen_ze_hua/article/details/53997790 https://blog.csdn.net/qq_40828914/article/details/81775519 欧拉函数,用φ(n)表示 欧拉函数是求小于等于n的数中与n互质的数的数目 辣么,怎么求哩?~(-o ̄▽ ̄)-o 可以先在1到n-1…
题目: 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,下标 ,a ,b , c 对应数相加等于 targe 找出所有满足条件且不重复的三元组下标 解析: 在一个list里面找出来三个数字使这三个数字相加等于目标targe, 这里是一个list 我们去循环这里面的元素,我们利用for循环, 第一个取来,然后后剩下的元素分别取循环上一个循环剩下的元素.这样保证了不重复,最后验证下,如果找出来的数字的值满足a+b+c=targe ,且三个数不相等,我们认为…