UVA 11971 - Polygon 数学概率】的更多相关文章

                                    Polygon  John has been given a segment of lenght N, however he needs a polygon. In order to create a polygonhe has cut given segment K times at random positions (uniformly distributed cuts). Now he has K + 1much sh…
题意:一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率. 析:这个题,很明显和 n 是没有任何关系的,因为无论 n 是多少那切多少段都可以,只与切多少段有关.然后我们要转化一下,不能直接做,因为不好做. 转化为一个圆上选 m+1 个点,能不能组成多边形,很容易知道如果一个边大于一半圆的周长,那就组不成多边形.然后位置是随便选的,概率就是1, 然后其他 m-1 个点,就只能放那一半上,每个都有1/2的概率,然后 m 个,就是1/(2^m),然后每个点都…
题意: 一根长度为n的木条,随机选k个位置将其切成k+1段,问这k+1段能组成k+1条边的多边形的概率? 思路: 数学题.要求的是概率,明显与n无关. 将木条围成一个圆后再开切k+1刀,得到k+1段.组不成多边形就是其中有一段特别长,比其他k段加起来还要长.先算出不能围成多边形的概率,那么就是圆上面必须要有一段的长度大于半个圆周长,且其他的k-1个位置都要在同一边. 第一个点随机选,概率为1,假设这个点就是木条要组成圆的那两端.接下来要选其他的k个点的位置,他们都在同一个半圆上的概率是(1/2)…
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3122 题意: 有一根长度为n的木条,随机选k个位置把它们切成k+1段小木条.求这些小木条能组成一个多边形的概率. 分析: 不难发现本题的答案与n无关.在一条直线上切似乎难以处理,可以把直线接成一个圆,多切一下,即在圆上随机选k+1个点,把圆周切成k+1段.根据对称性,两个问题的答案…
https://vjudge.net/problem/UVA-11971 有一根长度为n的木条,随机选k个位置把它们切成k+1段小木条.求这些小木条能组成一个多边形的概率. 将木条看做一个圆,线上切k刀等价于圆上切k+1刀 如果能组成多边形,每一段木条的长度都要<圆周长/2 反过来,如果不能组成多边形,有且仅有一段长度>=圆周长/2 如图所示,第一刀可以随便切,接下来的每一刀都要在第一刀所在的那个半圆上 概率=(1/2)^k 每一个切点处,都可以断开成为线,共有k+1种断法 所以不能构成多边形…
感觉这道题的转换真的是神来之笔 把木条转换成圆,只是切得次数变多一次 然后只要有一根木条长度为直径就租不成 其他点的概率为1/2^k 当前这个点的有k+1种可能 所以答案为1 - (k+1)/2^k #include<cstdio> #include<cmath> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; typedef long long ll; ll gcd(ll a,…
题意: 有一根绳子,在上面随机选取k个切点,将其切成k+1段,求这些线段能够成k+1边形的概率. 分析: 要构成k+1边形,必须最长的线段小于其他k个线段之和才行. 紫书上给出了一种解法,但是感觉理解得不是太好,所以又去网上找了其他解法. 知乎上有人问过这个问题,而且给出了很多种严格的解法. 最后代码里将(1LL << i)写成(1 << i),这种细节应当注意. #include <cstdio> typedef long long ll; ll gcd(ll a,…
题目链接:uva 542 - France '98 题目大意:有16支球队比赛,给出16支球队的名称,然后给出16*16的表格,g[i][j] 表示i队胜j队的概率,问说16支球队获得总冠军的概率. 解题思路:模拟比赛的过程,将队伍分组,每次和组内的其他队伍决胜负,概率之和即为出现的概率,只要处理好下标就可以了. #include <stdio.h> #include <string.h> #include <math.h> const int N = 16; char…
题目链接:uva 11181 - Probability|Given 题目大意:有n个人去超市买东西,给出r,每个人买东西的概率是p[i],当有r个人买东西的时候,第i个人恰好买东西的概率. 解题思路:dfs思路很简单,主要注意说ans[i] / P, (P为n个人中买东西的人数为r的事件发生的概率). #include <stdio.h> #include <string.h> const int N = 30; int n; double p[N], ans[N]; doubl…
题目链接:uva 10169 - Urn-ball Probabilities ! 题目大意:在一个箱子中,原本有1个红球,然后任意取出(有放回)一个球,然后再往里放一个白球(每次取都要放进一个白球),给出n,表示取了n次球,要求输出至少有连续抽到两个红球的概率,以及没有连续抽到红球的概率,因为没有连续抽到红球的概率非常小,所以输出小数点后有几位为0. 解题思路:将每两次去球作为一次讨论,p = 1/(i * (i + 1),然后每次叠乘(1 - p)就可以得到q, (1 - q)为第一个答案.…