t<=10000组询问:有多少x,y,满足$x\epsilon [1,n],y\epsilon [1,m],(x,y)为质数$.n,m<=1e7. 首先式子列出来,f(i)--1<=x<=n,1<=y<=m中有多少(x,y)=i,g(i)--1<=x<=n,1<=y<=m中有多少i|(x,y),$g(i)=\sum_{i|d} f(d) ------> f(i)=\sum_{i|d} \mu(\frac{d}{i})g(d)$,而$g(i)…
BZOJ2820 YY的GCD Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 2 10 10 100 100 Sample Output 30 2791 H…
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了一题 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 kAc这种傻×必然不会了,于是向你来请教…… T = 10000 N, M <= 10000000 思路: f(n)表示gcd==n的对数. g(n)表示gcd的n的倍数的对数…
[BZOJ2820]YY的GCD 试题描述 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 输入 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M 输出 T行,每行一个整数表示第i组数据的结果 输入示例 输出示例 数据规模及约定 T = 10000N, M <= 10000000 题解 设 易知 ……式1 根据莫比…
题解 题意 题目链接 Sol 反演套路题.. 不多说了,就是先枚举一个质数,再枚举一个约数然后反演一下. 最后可以化成这样子 \[\sum_{i = 1}^n \frac{n}{k} \frac{n}{k} \sum_{p \in P, p | k} \mu(\frac{K}{p})\] 然后后面的那一坨可以暴力预处理..复杂度不清楚,但是显然严格小于调和级数,所以也没啥大问题. /* */ #include<bits/stdc++.h> #define LL long long //#def…
一个数表上第i行第j列表示能同时整除i和j的自然数,Q<=2e4个询问,每次问表上1<=x<=n,1<=y<=m区域内所有<=a的数之和.n,m<=1e5,a<=1e9.对2^31取模. 这个a很讨厌就先不理他.首先i行j列的那个数其实是$a_{ij}=\sum_{x|gcd(i,j)} x$,令$s(t)=\sum_{x|t}x$,然后gcd(i,j)是只有1e5的,可以先把s数组预处理出来.s是积性函数所以线性筛可以搞,但复杂度不在这里,直接埃筛也行.…
t<=1e4个询问每次问n,m<=1e7,$\sum_{1\leqslant x \leqslant n,1 \leqslant y\leqslant m}lcm(x,y)$. 首先题目要求的是$\sum_{1 \leqslant x \leqslant n,1 \leqslant y \leqslant m}lcm(x,y)=\sum_{1 \leqslant x \leqslant n,1 \leqslant y \leqslant m}\frac{x*y}{(x,y)}$, 啊很好那来枚…
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必然不会了,于是向你来请教……多组输入 Input 第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M Output T行,每行一个整数表示第i组数据的结果 Sample Input 2 10 10 100 100 Sample Output 30 2791 HINT T = 10000 N…
Description 求有多少对(x,y)的gcd为素数,x<=n,y<=m.n,m<=1e7,T<=1e4. Solution 因为题目要求gcd为素数的,那么我们就只考虑素数mu的贡献就行了 对于p,对于k*p的贡献是mu[k] 然后加上整除分块优化就行了 p可以筛完素数处理,处理复杂度为O(n/log*log)正好为O(n) Code #include<cstdio> #include<algorithm> #include<cstring&g…
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2820 题意:多次询问,求1<=x<=N, 1<=y<=M且gcd(x,y)为质数有多少对. 首先,    由于这里是多次询问,并且数据很大,显然不能直接求解,需要做如下处理.. 整数的除法是满足结合律的,然后我们设T=p*d,有: 注意到后面部分是可以预处理出来的,那么整个ans就可以用分块处理来求了,设 那么有,考虑当p|x时,根据莫比菲斯mu(x)的性质,px除以其它非…
题目大意: 给你一棵树,树上的点编号为\(1-n\).选两个点\(i.j\),能得到的得分是\(\phi(a_i*a_j)*dis(i,j)\),其中\(dis(i,j)\)表示\(a\)到\(b\)的最短距离.求一次选择能得到的得分的期望 推式子 显然是求\(\frac{1}{n(n-1)} \sum\limits_{i=1}^n \sum\limits_{j=1}^n \phi(i*j)*dis(i,j)\) 有这样一个式子\(\phi(i*j)=\frac{\phi(i)*phi(j)*g…
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线性筛筛常见积性函数及其代码:https://blog.masterliu.net/algorithm/sieve/ 积性函数与线性筛(包括普通线性函数):https://blog.csdn.net/weixin_42562050/article/details/87997582 bzoj2154/b…
题目大意 给你\(a_1\ldots a_n,l,c\)每次给你\(x,y\),求有多少个序列满足:长度\(\leq l\),每个元素是\([1,c]\),循环右移\(a_j(x\leq j\leq y)\)次后和原序列相同. \(n,q\leq 100000,l,c\leq{10}^9,lcm(a_1,\ldots a_n)\leq{10}^13\) 题解 显然只有右移\(\gcd(a_x,a_{x+1},\ldots,a_y)\)次后和原序列相同才满足条件. 先求出\(s=\gcd(a_x,…
原文http://www.cnblogs.com/zhouzhendong/p/8665675.html 题目传送门 - 51Nod1675 题意 给定序列$a,b$,让你求满足$\gcd(x,y)=1,a_{b_x}=b_{a_y}$的$(x,y)$的个数. 题解 我们先考虑没有$gcd(x,y)=1$的情况. 仔细一看发现$a_{b_x}=b_{a_y}$是个障眼法,跟你绕来绕去. 弄个新的$A,B$序列,其中$A_x=a_{b_x},B_x=b_{a_x}$.然后就把这个条件变成了$A_x…
hdu 1695 莫比乌斯反演 给出a,b,c,d,k, 求满足a <= x <= b && c <= y <= d && gcd(x,y)=k 的数对(x,y)的对数. a=c=1; 0 < b,c <= 1e5; (n1,n2) 和 (n2,n1) 算为同种情况 其实是求满足1 <= x <= b/k && 1 <= y <= d/k && gcd(x,y)=1 的 数对(x,y…
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==prime]​$ 题解: 解法一:莫比乌斯反演套路题 其实这样就可以了,但是还可以优化一下子 设​​T=dp ​ 整除分块就好了,其实这就和 yy的gcd 一样了 解法二:欧拉函数 考虑上面的第一个式子​可以化简成 ​ tot是n以内质数的数量 这是因为考虑到每次都两次计算了​$\varphi(1)$…
这题跟2818一样的,只不过数据水一点,可以用多一个log的办法水过去…… 原题意思是求以下式子:$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a}\sum\limits_{i=1}^{b}[gcd(i,j)==p]$首先把p拿下来,得到$Ans=\sum\limits_{isprime(p)}\sum\limits_{i=1}^{a/p}\sum\limits_{i=1}^{b/p}[gcd(i,j)==1]$然后就跟1101一样了,我就复制下…
Description 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对. Input 一个整数N Output 如题 Sample Input 4 Sample Output 4 Hint 对于样例(2,2),(2,4),(3,3),(4,2) 1<=N<=10^7 这个题目可以用欧拉函数或者莫比乌斯反演. 第一种欧拉函数: 因为gcd(x, y) = p,所以gcd(x/p, y/p) = 1. 不妨设y较大,那么就是求所有比y/p小的数k,ph…
正解:莫比乌斯反演 解题报告: 传送门! 首先看到这个显然就想到莫比乌斯反演$QwQ$? 就先瞎搞下呗$QwQ$ $gcd(x,y)=k$,即$gcd(\left \lfloor \frac{x}{k} \right \rfloor,\left \lfloor \frac{y}{k} \right \rfloor)=1$ 然后这个,虽然以前推过几次辣,,,但还是重新推下,,,太久没碰这些东西辣/$kel\ kel\ kel$ 设$F[k]$表示$gcd(x,y)$为$k$的倍数的数量,显然有$F…
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性筛的时候只考虑当前的数最小因子,如果进来的最小因子不存在,相当于在之前那个数的基础上的每个mu值都多加了一个质数,那么 这些mu值就要取反,如果已经包含了这个最小因子,我这里另外进行了跟之前类似的讨论方法,在代码中写着 因为这题目数据比较大,这里求解的时候不应该线性求,因为总是有一段区间的n/i*(m/i)值…
[BZOJ2820]YY的GCD(莫比乌斯反演) 题面 讨厌权限题!!!提供洛谷题面 题解 单次询问\(O(n)\)是做过的一模一样的题目 但是现在很显然不行了, 于是继续推 \[ans=\sum_{d=1}^n[d\_is\_prime]\sum_{i=1}^{n/d}[\frac{n}{id}][\frac{m}{id}]\] 老套路了 令\(T=id\) \[ans=\sum_{T=1}^{n}[\frac{n}{T}][\frac{m}{T}]\sum_{d|T}[d\_is\_prim…
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\)表示\(Gcd(x,y)=i\)的\((x,y)\)的个数,\(F(i)\)表示\(Gcd(x,y)\%i=0\)的\((x,y)\)的个数. 那么有$$F(i)=\lfloor\frac{N}{i}\rfloor\lfloor\frac{M}{i}\rfloor=\sum_{i\mid d}f(…
首先我们来看一道题  BZOJ 2301 Problem b Description 对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. Input 第一行一个整数n,接下来n行每行五个整数,分别表示a.b.c.d.k Output 共n行,每行一个整数表示满足要求的数对(x,y)的个数 Sample Input 2 2 5 1 5 1 1 5 1 5 2 Sample Output 14 3 HI…
莫比乌斯反演 ​ 对于两个定义域为非负整数的函数\(F(n)\)和\(f(n)\) ​ 若满足:\(F(n)=\sum\limits_{d|n}f(d)\),则反演得到\(f(n)=\sum\limits_{d|n}\mu(d)F(\frac n d)\): \[ \sum_{d\mid n}\mu(d)F(\frac n d)= \sum_{d\mid n}\mu(d)\sum_{d'\mid (n/d)}f(d')= \sum_{d'\mid n}f(d')\sum_{d|(n/d')}\m…
我也不知道什么是"莫比乌斯反演"和"杜教筛" Part0 最近一直在搞这些东西 做了将近超过20道题目吧 也算是有感而发 写点东西记录一下自己的感受 如果您真的想学会莫比乌斯反演和杜教筛,请拿出纸笔,每个式子都自己好好的推一遍,理解清楚每一步是怎么来的,并且自己好好思考. Part1莫比乌斯反演 莫比乌斯反演啥都没有,就只有两个式子(一般只用一个) 原来我已经写过一次了,再在这里写一次 就只写常用的那个吧 基本的公式 对于一个函数\(f(x)\) 设\(g(x)=\…
[Luogu3768]简单的数学题(莫比乌斯反演,杜教筛) 题面 洛谷 \[求\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)\] $ n<=10^9$ 题解 很明显的把\(gcd\)提出来 \[\sum_{d=1}^nd\sum_{i=1}^n\sum_{j=1}^nij[gcd(i,j)==d]\] 习惯性的提出来 \[\sum_{d=1}^nd^3\sum_{i=1}^{n/d}\sum_{j=1}^{n/d}ij[gcd(i,j)==1]\] 后面这玩意很明显的来一发…
[UVa11426]GCD - Extreme (II)(莫比乌斯反演) 题面 Vjudge 题解 这.. 直接套路的莫比乌斯反演 我连式子都不想写了 默认推到这里把.. 然后把\(ans\)写一下 \[ans=\sum_{d=1}^nd\sum_{i=1}^{n/d}\mu(i)[\frac{n}{id}]^2\] 令\(T=id\) 然后把\(T\)提出来 \[ans=\sum_{T=1}^n[\frac{n}{T}]^2\sum_{d|T}d\mu(\frac{T}{d})\] 后面那一堆…
[BZOJ4816]数字表格(莫比乌斯反演) 题面 BZOJ 求 \[\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]\] 题解 忽然不知道这个要怎么表示... 就写成这样吧.. \[\prod_{d=1}^n\prod_{i=1}^n\prod_{j=1}^mif(gcd(i,j)==d)f[gcd(i,j)]\] 直接把\(f[d]\)提出来 \[\prod_{d=1}^{n}f[d]^{\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,…
[BZOJ4407]于神之怒加强版(莫比乌斯反演) 题面 BZOJ 求: \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)^k\] 题解 根据惯用套路 把公约数提出来 \[\sum_{d=1}^nd^k\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]\] 再提一次 \[\sum_{d=1}^nd^k\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}[gcd(i,j)==1]\] 后面这个东西很显然可以数论分块+莫比乌斯反演做到\(O(\…
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都默认\(n<m\) 我们都知道\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) 所以所求化简 \[\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\] 看到\(gcd(i,j)\)很不爽,于是就再提出来 \[\sum_{d=1}^{n}\sum_…