一.shuffle机制 1.概述 (1)MapReduce 中, map 阶段处理的数据如何传递给 reduce 阶段,是 MapReduce 框架中最关键的一个流程,这个流程就叫 Shuffle:(2)Shuffle: 数据混洗 ——(核心机制:数据分区,排序,缓存):(3) 具体来说:就是将 maptask 输出的处理结果数据,分发给 reducetask,并在分发的过程 中,对数据按 key 进行了分区和排序:    2.主要流程 3.详细流程 (1)maptask 收集我们的 map()…
MapReduce工作流程 1.准备待处理文件 2.job提交前生成一个处理规划 3.将切片信息job.split,配置信息job.xml和我们自己写的jar包交给yarn 4.yarn根据切片规划计算出MapTask的数量 (以一个MapTask为例) 5.Maptask调用inputFormat生成RecordReader,将自己处理的切片文件内容打散成K,V值 6.MapTask将打散好的K,V值交给Mapper,Mapper经过一系列的处理将KV值写出 7.写出的KV值被outputCo…
Shuffle机制 Mapreduce确保每个reducer的输入都是按键排序的.系统执行排序的过程(Map方法之后,Reduce方法之前的数据处理过程)称之为Shuffle. partition分区 Partition分区流程处于Mapper数据属于初到环形缓冲区时进行,此时会将通过Partition分区获取到的每一行key-value对应的分区值计入环形缓冲流的左. 问题引出 要求将统计结果按照条件输出到不同文件中(分区).比如:将统计结果按照手机归属地不同省份输出到不同文件中(分区) 分区…
1.Mapreduce的shuffle机制: Mapreduce中,map阶段处理的数据如何传递给Reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle 将maptask处理后的输出结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序 MapReduce程序的执行过程分为两个阶段:Mapper阶段和Reducer阶段. 1.MapReduce的Map阶段: 1.1.从HDFS读取数据: 由FileInputFormat实现类的g…
MapReduce实例2(自定义compare.partition)& shuffle机制 实例:统计流量 有一份流量数据,结构是:时间戳.手机号.....上行流量.下行流量,需求是统计每个用户(手机号)的总上行.总下行以及总流量数值. Github地址 分析 由于希望的输出是一个 {手机号 上行流量 下行流量 总流量} 这样的结构,所以需要写个javabean把它们封装成一个类. private String phoneNum; private long upFlow; private lon…
原 Hadoop MapReduce 框架的问题 原hadoop的MapReduce框架图 从上图中可以清楚的看出原 MapReduce 程序的流程及设计思路: 首先用户程序 (JobClient) 提交了一个 job,job 的信息会发送到 Job Tracker 中,Job Tracker 是 Map-reduce 框架的中心,他需要与集群中的机器定时通信 (heartbeat), 需要管理哪些程序应该跑在哪些机器上,需要管理所有 job 失败.重启等操作. TaskTracker 是 Ma…
shuffle机制 1:每个map有一个环形内存缓冲区,用于存储任务的输出.默认大小100MB(io.sort.mb属性),一旦达到阀值0.8(io.sort.spill.percent),一个后台线程把内容写到(spill)磁盘的指定目录(mapred.local.dir)下的新建的一个溢出写文件. 2:写磁盘前,要partition,sort.如果有combiner,combine排序后数据. 3:等最后记录写完,合并全部溢出写文件为一个分区且排序的文件. 4:Reducer通过Http方式…
MapReduce中的Shuffle 在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量. Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时.输出结果须要按key哈希.而且分发到每个Reducer上去.这个过程就是shuffle.因为shu…
大数据名词(1) -Shuffle     Shuffle过程是MapReduce的核心,也被称为奇迹发生的地方.要想理解MapReduce, Shuffle是必须要了解的.我看过很多相关的资料,但每次看完都云里雾里的绕着,很难理清大致的逻辑,反而越搅越混.前段时间在做MapReduce job 性能调优的工作,需要深入代码研究MapReduce的运行机制,这才对Shuffle探了个究竟.考虑到之前我在看相关资料而看不懂时很恼火,所以在这里我尽最大的可能试着把Shuffle说清楚,让每一位想了解…