List<String> basicList = new ArrayList<String>(); basicList.add("{\"name\": \"zzq\",\"age\": 15}"); basicList.add("{\"name\": \"zzq1\",\"age\": 25}"); basicList.ad…
记录类型 利用记录类型可以实现复合数据类型的定义: 记录类型允许嵌套: 可以直接利用记录类型更新数据. 传统操作的问题 对于Oracle数据类型,主要使用的是VARCHAR2.NUMBER.DATE等类型,但是这些基本数据类型,如果在进行一些实际操作的时候就会比较麻烦. 获取一个雇员的完整信息: 如下数据类型被单独定义. DECLARE v_emp_empno        emp.empno%TYPE ; v_emp_ename        emp.ename%TYPE ; v_emp_jo…
第1章 Spark SQL 概述1.1 什么是 Spark SQL1.2 RDD vs DataFrames vs DataSet1.2.1 RDD1.2.2 DataFrame1.2.3 DataSet1.2.4 三者的共性1.2.5 三者的区别第2章 执行 Spark SQL 查询2.1 命令行查询流程2.2 IDEA 创建 Spark SQL 程序第3章 Spark SQL 解析3.1 新的起始点 SparkSession3.2 创建 DataFrames3.3 DataFrame 常用操…
Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完成特殊优化.可以通过SQL.DataFrames API.Datasets API与Spark SQL进行交互,无论使用何种方式,SparkSQL使用统一的执行引擎记性处理.用户可以根据自己喜好,在不同API中选择合适的进行处理.本章中所有用例均可以在spark-shell.pyspark shel…
自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQL on Hadoop解决方案之外,它还为Spark带来了通用.高效.多元一体的结构化数据处理能力.在刚刚发布的1.3.0版中,Spark SQL的两大升级被诠释得淋漓尽致. DataFrame 就易用性而言,对比传统的MapReduce API,说Spark的RDD API有了数量级的飞跃并不为过.然而,对于没有MapReduce和…
http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 1.DataFrame是什么?2.如何创建DataFrame?3.如何将普通RDD转变为DataFrame?4.如何使用DataFrame?5.在1.3.0中,提供了哪些完整的数据写入支持API? 自2013年3月面世以来,Spark SQL已经成为除Spark Core以外最大的Spark组件.除了接过Shark的接力棒,继续为Spark用户提供高性能的SQ…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
[From] https://blog.csdn.net/u010990043/article/details/82842995 最近整理了一下spark SQL内置配.加粗配置项是对sparkSQL 调优性能影响比较大的项,小伙伴们按需酌情配置.后续会挑出一些通用调优配置,共大家参考.有不正确的地方,欢迎大家在留言区留言讨论. 配置项 默认值 概述 spark.sql.optimizer.maxIterations 100 sql优化器最大迭代次数 spark.sql.optimizer.in…
Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession 创建 DataFrames 无类型的Dataset操作 (aka DataFrame 操作) Running SQL Queries Programmatically 全局临时视图 创建Datasets RDD的互操作性 使用反射推断Schema 以编程的方式指定Schema Aggregatio…
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating DataFrames) 2.3 DataFrame操作(DataFrame Operations) 2.4 运行SQL查询程序(Running…
一, 简介 Spark SQL是用于结构化数据处理的Spark模块.与基本的Spark RDD API不同,Spark SQL提供的接口为Spark提供了关于数据结构和正在执行的计算的更多信息.在内部,Spark SQL使用这些额外的信息来执行额外的优化.有几种与Spark SQL进行交互的方式,包括SQL和Dataset API.在计算结果时,使用相同的执行引擎,而不管使用哪种API /语言表示计算.这种统一意味着开发人员可以轻松地在不同的API之间来回切换,基于这些API提供了表达给定转换的…
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. DataFrames DataFrame是一个分布式的数据集合,该数据集合以命名列的方式进行整合.DataFrame可以理解为关系数据库中的一张表,也可以理解为R/Pyth…
Spark SQL是Spark框架的重要组成部分, 主要用于结构化数据处理和对Spark数据执行类SQL的查询. DataFrame是一个分布式的,按照命名列的形式组织的数据集合. 一张SQL数据表可以映射为一个DataFrame对象,DataFrame是Spark SQL中的主要数据结构. SqlContext实例是DataFrame和Spark SQL的操作入口, pyspark交互环境中已初始化了一个sqlContext实例, 在提交任务脚本时需要使用一个SparkContext来初始化:…
本文讲解Spark的结构化数据处理,主要包括:Spark SQL.DataFrame.Dataset以及Spark SQL服务等相关内容.本文主要讲解Spark 1.6.x的结构化数据处理相关东东,但因Spark发展迅速(本文的写作时值Spark 1.6.2发布之际,并且Spark 2.0的预览版本也已发布许久),因此请随时关注Spark SQL官方文档以了解最新信息. 文中使用Scala对Spark SQL进行讲解,并且代码大多都能在spark-shell中运行,关于这点请知晓. 概述 相比于…
原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查询引擎. DataFrames DataFrame是一个分布式的数据…
#Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFrame接口支持多种数据源的操作.一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表.把DataFrame注册为临时表之后,就可以对该DataFrame执行SQL查询.Data Sources这部分首先描述了对Spark的数据源执行加载和保存的常用方法,然后对内置数据源进行深入介绍.…
1,DataFrame是一个将数据格式化为列形式的分布式容器,类似于一个关系型数据库表. 编程入口:SQLContext 2,SQLContext由SparkContext对象创建 也可创建一个功能更加全面的HiveContext对象,HiveContext是SQLContext的子类,从API中可以看出HiveContext extends SQLContext,所以能用SQLContext的地方也能用HiveContext 3,使用HiveContext可以使用更加复杂的HiveQL语句,可…
4.1 通用加载/保存方法 4.1.1手动指定选项 Spark SQL的DataFrame接口支持多种数据源的操作.一个DataFrame可以进行RDDs方式的操作,也可以被注册为临时表.把DataFrame注册为临时表之后,就可以对该DataFrame执行SQL查询 Spark SQL的默认数据源为Parquet格式.数据源为Parquet文件时,Spark SQL可以方便的执行所有的操作.修改配置项spark.sql.sources.default,可修改默认数据源格式 val df = s…
spark SQL Parquet 文件的读取与加载 是由许多其他数据处理系统支持的柱状格式.Spark SQL支持阅读和编写自动保留原始数据模式的Parquet文件.在编写Parquet文件时,出于兼容性原因,所有列都会自动转换为空. 1, 以编程方式加载数据 这里使用上一节的例子中的数据:常规数据加载   private def runBasicParquetExample(spark: SparkSession): Unit = {      import spark.implicits.…
Spark1.0出来了,变化还是挺大的,文档比以前齐全了,RDD支持的操作比以前多了一些,Spark on yarn功能我居然跑通了.但是最最重要的就是多了一个Spark SQL的功能,它能对RDD进行Sql操作,目前它只是一个alpha版本,喜欢尝鲜的同志们进来看看吧,下面是它的官网的翻译. Spark SQL是支持在Spark中使用Sql.HiveSql.Scaca中的关系型查询表达式.它的核心组件是一个新增的RDD类型SchemaRDD,它把行对象用一个Schema来描述行里面的所有列的数…
介绍Spark SQL的JSON支持,这是我们在Databricks中开发的一个功能,可以在Spark中更容易查询和创建JSON数据.随着网络和移动应用程序的普及,JSON已经成为Web服务API以及长期存储的常用的交换格式.使用现有的工具,用户通常会使用复杂的管道来在分析系统中读取和写入JSON数据集.在Apache Spark 1.1中发布Spark SQL的JSON支持,在Apache Spark 1.2中增强,极大地简化了使用JSON数据的端到端体验. 现有做法 实际上,用户经常面临使用…
Spark SQL讲解 Spark SQL是支持在Spark中使用Sql.HiveSql.Scala中的关系型查询表达式.它的核心组件是一个新增的RDD类型SchemaRDD,它把行对象用一个Schema来描述行里面的所有列的数据类型,它就像是关系型数据库里面的一张表.它可以从原有的RDD创建,也可以是Parquet文件,最重要的是它可以支持用HiveQL从hive里面读取数据. 下面是一些案例,可以在Spark shell当中运行. 首先我们要创建一个熟悉的Context,熟悉spark的人都…
测试数据 sparkStu.text zhangxs chenxy wangYr teacher wangx teacher sparksql { ,"job":"chengxy", ,"job":"teacher", ,"job":"student" }   object CreateDataFream { //创建student对象 case class Student(name:S…
Spark SQL在Spark内核基础上提供了对结构化数据的处理,在Spark1.3版本中,Spark SQL不仅可以作为分布式的SQL查询引擎,还引入了新的DataFrame编程模型. 在Spark1.3版本中,Spark SQL不再是Alpha版本,除了提供更好的SQL标准兼容之外,还引进了新的组件DataFrame.同时,Spark SQL数据源API也实现了与新组件DataFrame的交互,允许用户直接通过Hive表.Parquet文件以及一些其他数据源生成DataFrame.用户可以在…
一.认识Spark sql 1.什么是Sparksql? spark sql是spark的一个模块,主要用于进行结构化数据的处理,它提供的最核心抽象就是DataFrame. 2.SparkSQL的作用? 提供一个编程抽象(DataFrame),并且作为分布式SQL查询引擎 DataFrame:它可以根据很多源进行构建,包括:结构化的数据文件.hive中的表,外部的关系型数据库.以及RDD 3.运行原理 将SparkSQL转化为RDD,然后提交到集群执行 4.特点 容易整合.统一的数据访问方式.兼…
本文将介绍使用MyBatis框架,编写DAO层接口类和接口类对应的sql映射文件,使用动态sql查询满足条件的用户集合. 首先,需要创建一个实体类User,供封装数据使用: package com.xyfer.pojo; public class User{ private String name; private int age; private String sex; public String getName() { return name; } public void setName(S…
数据 [{ "name": "张三", "score": 153 }, { "name": "李四", "score": 206 }, { "name": "王五", "score": 68.5 }, { "name": "王六", "score": 83.5 }] 需…
错误方式一: 在mybatis的动态sql语句中使用<if>标签可以判断sql中的条件是否成立. <select id="getPerson" resultType="com.lzj.bean.Employee"> select * from tbl_employee where <if test="id!=null"> id=#{id} </if> <if test="lastNa…
spark sql中支持sechema合并的操作. 直接上官方的代码吧. val sqlContext = new org.apache.spark.sql.SQLContext(sc) // sqlContext from the previous example is used in this example. // This is used to implicitly convert an RDD to a DataFrame. import sqlContext.implicits._…
不得不说,使用Java Stream操作集合实在是太好用了,不过最近在观察生产环境错误日志时,发现偶尔会出现以下2个异常: java.lang.NullPointerException java.util.NoSuchElementException 因此本篇博客总结下使用Java Stream的部分场景以及如何避免上述的2个异常: 提取集合中的某一列(普通提取.去重) 按条件过滤集合 求和 最大值/最小值/平均值 1. 数据准备 首先定义下Friend类: package com.zwwhnl…