ReLU】的更多相关文章

参考知乎的讨论:https://www.zhihu.com/question/29021768 1.计算简单,反向传播时涉及除法,sigmod求导要比Relu复杂: 2.对于深层网络,sigmod反向传播时,容易出现梯度消失的情况(在sigmod接近饱和区),造成信息丢失: 3.Relu会使一些输出为0,造成了网络的稀疏性,缓解过拟合. droupout:防止过拟合 参考:http://www.cnblogs.com/tornadomeet/p/3258122.html…
论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) 起源:传统激活函数.脑神经元激活频率研究.稀疏激活性 传统Sigmoid系激活函数 传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid.Tanh-Sigmoid)被视为神经网络的核心所在. 从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果. 从神经科学上来看,中央区酷似神经元…
The state of the art of non-linearity is to use ReLU instead of sigmoid function in deep neural network, what are the advantages? I know that training a network when ReLU is used would be faster, and it is more biological inspired, what are the other…
预训练的用处:规则化,防止过拟合:压缩数据,去除冗余:强化特征,减小误差:加快收敛速度. 标准的sigmoid输出不具备稀疏性,需要用一些惩罚因子来训练出一大堆接近0的冗余数据来,从而产生稀疏数据,例如L1.L1/L2或Student-t作惩罚因子.因此需要进行无监督的预训练.而ReLU是线性修正,公式为:g(x) = max(0, x),是purelin的折线版.它的作用是如果计算出的值小于0,就让它等于0,否则保持原来的值不变.这是一种简单粗暴地强制某些数据为0的方法,然而经实践证明,训练后…
1.Relu激活函数 Relu激活函数(The Rectified Linear Unit)表达式为:f(x)=max(0,x). 2.tensorflow实现 #!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf input_data = tf.constant( [[0, 10, -10],[-1,2,-3]] , dtype = tf.float32 ) output = tf.nn.relu(input…
论文参考:Deep Sparse Rectifier Neural Networks (很有趣的一篇paper) Part 0:传统激活函数.脑神经元激活频率研究.稀疏激活性 0.1  一般激活函数有如下一些性质: 非线性: 当激活函数是线性的,一个两层的神经网络就可以基本上逼近所有的函数.但如果激活函数是恒等激活函数的时候,即f(x)=x,就不满足这个性质,而且如果MLP(多层感知机)使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的: 可微性: 当优化方法是基于梯度的时候,就体现了…
0 - inplace 在pytorch中,nn.ReLU(inplace=True)和nn.LeakyReLU(inplace=True)中存在inplace字段.该参数的inplace=True的意思是进行原地操作,例如: x=x+5是对x的原地操作 y=x+5,x=y不是对x的原地操作 所以,如果指定inplace=True,则对于上层网络传递下来的tensor直接进行修改,可以少存储变量y,节省运算内存. inplace=True means that it will modify th…
import numpy as np import matplotlib.pylab as plt from matplotlib.font_manager import FontProperties font_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=16) # 线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是一种人工神经网络中常用的激活函数(activ…
训练的时候很”脆弱”,很容易就”die”了,训练过程该函数不适应较大梯度输入,因为在参数更新以后,ReLU的神经元不会再有激活的功能,导致梯度永远都是零. 例如,一个非常大的梯度流过一个 ReLU 神经元,更新过参数之后,这个神经元再也不会对任何数据有激活现象了,那么这个神经元的梯度就永远都会是 0. 如果 learning rate 很大,那么很有可能网络中的 40% 的神经元都”dead”了.   原因: 假设有一个神经网络的输入W遵循某种分布,对于一组固定的参数(样本),w的分布也就是Re…
线性整流函数(Rectified Linear Unit, ReLU),又称修正线性单元, 是一种人工神经网络中常用的激活函数(activation function),通常指代以斜坡函数及其变种为代表的非线性函数.比较常用的线性整流函数有斜坡函数,以及带泄露整流函数 (Leaky ReLU),其中  为神经元(Neuron)的输入.线性整流被认为有一定的生物学原理[1],并且由于在实践中通常有着比其他常用激活函数(譬如逻辑函数)更好的效果,而被如今的深度神经网络广泛使用于诸如图像识别等计算机视…