这次整理了一下SPFA算法,首先相比Dijkstra算法,SPFA可以处理带有负权变的图.(个人认为原因是SPFA在进行松弛操作时可以对某一条边重复进行松弛,如果存在负权边,在多次松弛某边时可以更新该边.而 Dijkstra 算法如果某一条边松弛后就认为该边已经是该连接点到源点的最短路径了,不会重复检查更新. Dijkstra只能保证局部最优解而不会保证该解是全局最优解) 实现方法: 建立一个队列,初始时队列里只有起始点,再建立一个表格记录起始点到所有点的最短路径(该表格的初始值要赋为极大值,该…
做OJ需要用到搜索最短路径的题,于是整理了一下关于图的搜索算法: 图的搜索大致有三种比较常用的算法: 迪杰斯特拉算法(Dijkstra算法) 弗洛伊德算法(Floyd算法) SPFA算法 Dijkstra算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树. 算法的思路: Dijkstra算法采用的是一种贪心的策略,声明一个数组dis来保存源点到各个顶点的最短距离和一个保存已经找到了最短路径的顶点的集合:T,初始时,原点 s 的路径权重被赋为 0 (dis…
简介 Floyd-Warshall算法(Floyd-Warshall algorithm),是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似.该算法名称以创始人之一.1978年图灵奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名. 简单的说就是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包.Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2). 解决最短…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路…
适用范围:给定的图存在负权边,这时类似Dijkstra等算法便没有了用武之地,而Bellman-Ford算法的复杂度又过高,SPFA算法便 派上用场了. 我们约定有向加权图G不存在负权回路,即最短路径一定存在.当然,我们可以在执行该算法前做一次拓扑排序,以判断是否存在负权回路,但这不是我们讨论的重 点. 算法思想:我们用数组d记录每个结点的最短路径估计值,用邻接表来存储图G.我们采取的方法是动态逼近法:设立一个先进先出的队列用来保存待优化的 结点,优化时每次取出队首结点u,并且用u点当前的最短路…
PS:如果您只需要Bellman-Ford/SPFA/判负环模板,请到相应的模板部分 上一篇中简单讲解了用于多源最短路的Floyd算法.本篇要介绍的则是用与单源最短路的Bellman-Ford算法和它的一些优化(包括已死的SPFA) Bellman-Ford算法 其实,和Floyd算法类似,Bellman-Ford算法同样是基于DP思想的,而且也是在不断的进行松弛操作(可以理解为「不断放宽对结果的要求」,比如在Floyd中就体现为不断第一维\(k\),具体解释在这里) 既然是单源最短路径问题,我…
前置知识:Bellman-Ford算法 前排提示:SPFA算法非常容易被卡出翔.所以如果不是图中有负权边,尽量使用Dijkstra!(Dijkstra算法不能能处理负权边,但SPFA能) 前排提示*2:一定要先学Bellman-Ford! 0.引子 在Bellman-Ford算法中,每条边都要松弛\(n-1\)轮,还不一定能松弛成功,这实在是太浪费了.能不能想办法改进呢? 非常幸运,SPFA算法能做到这点.(SPFA又名"Bellman-Ford的队列优化",就是这个原因.) 1.基本…
Dijkstra在正权图上运行速度很快,但是它不能解决有负权的最短路,如下图: Dijkstra运行的结果是(以1为原点):0 2 12 6 14: 但手算的结果,dist[4]的结果显然是5,为什么会出现这种情况呢?原因很显然,Dijkstra认为,从一个更长的边过来不会比一个更短的边过来更短(读起来很绕口,但请读者好好理解这句话!)但是由于出现了负权边,可以“救回来”,就像松弛2号节点一样. Bellman_Ford: 知道了Dijkstra为什么不能做负权图之后,我们来看看Bellman-…
一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需要对外存进行访问的排序过程. 2.比较类排序和非比较排序 比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序. 非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较…
Boyer-Moore高质量实现代码详解与算法详解 鉴于我见到对算法本身分析非常透彻的文章以及实现的非常精巧的文章,所以就转载了,本文的贡献在于将两者结合起来,方便大家了解代码实现! 算法详解转自:http://www.searchtb.com/2011/07/%E5%AD%97%E7%AC%A6%E4%B8%B2%E5%8C%B9%E9%85%8D%E9%82%A3%E4%BA%9B%E4%BA%8B%EF%BC%88%E4%B8%80%EF%BC%89.html C语言代码实现转自: htt…