这个回溯感觉掌握的有些熟练了. 两种方式,递归和循环. 感觉就是套框架了. /** * Return an array of arrays of size *returnSize. * The sizes of the arrays are returned as *columnSizes array. * Note: Both returned array and *columnSizes array must be malloced, assume caller calls free().…
枚举子集: 复杂度:O(2^k) )&s); 用sos dp求解子集和以及父集和 子集和: ; i <= k; i--) { ; mask < (<<k); mask++) { ) dp[mask][i] = cnt[mask]; <<i)) dp[mask][i] = dp[mask^(<<i)][i-] + dp[mask][i-]; ]; } } 父集和: 转移方向与上相反,优化一维空间 ; mask < (<<k); mas…
Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not contain duplicate subsets. For example, If nums = [1,2,3], a solution is: [ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ] 就是求指定集合的所有子集. 三种解法: Rec…
Leetcode之回溯法专题-90. 子集 II(Subsets II) 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: [1,2,2] 输出: [ [2], [1], [1,2,2], [2,2], [1,2], [] ] 分析:是78题的升级版,新增了一些限制条件,nums数组是会重复的,求子集. class Solution { List<List<Integer>> ans = new Arr…
Leetcode之回溯法专题-78. 子集(Subsets) 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3] 输出: [ [3],   [1],   [2],   [1,2,3],   [1,3],   [2,3],   [1,2],   [] ] 分析:这题也是很基础的关于回溯法的一题,题中给一个数组,求他的子集(包括空集). AC代码: class Solution { List<Li…
谷歌笔试题--给定一个集合A=[0,1,3,8](该集合中的元素都是在0,9之间的数字,但未必全部包含), 指定任意一个正整数K,请用A中的元素组成一个大于K的最小正整数. Google2009华南地区笔试题 给定一个集合A=[0,1,3,8](该集合中的元素都是在0,9之间的数字,但未必全部包含),指定任意一个正整数K,请用A中的元素组成一个大于K的最小正整数.比如,A=[1,0] K=21 那么输出结构应该为100. <pre name="code" class="…
要求: 给定一个集合,枚举所有可能的子集.此处的集合是不包含重复元素的. Method0: 增量构造法 思路:每次选取一个元素至集合中,为了避免枚举重复的集合,此处要采用定序技巧 -- 除了第一个元素,每次选取必须要比集合中的前一个元素要大! // A 为原集合: // B 为子集,每次调用函数即会打印一次 // cur 为子集元素个数 void print_subset0(int *A, int *B, int N, int cur) { for(int i=0; i<cur; i++) {…
最近做的题里面有这个东西,于是写一篇博客总结一下吧. 枚举子集 枚举子集就是状压的时候枚举其中的二进制位中的1的子集.直接暴力枚举二进制位时间复杂度是\(O(4^n)\),但是我们可以发现,对于每一位有以下三种状态,在枚举的子集中为1,在子集中为0且在原状态中为1,以及在原状态中为0.这样,对于1到\(2^n\)的数中,子集的总数为\(3^n\),这样,通过一些比较优秀的枚举,时间复杂度即为\(O(3^n)\).代码如下: for(int i=s;;i=(i-1)&s) { //do sth..…
概要 今天偶然看到有个关于数学中集合的问题,就突发奇想的想用python实现下求一个集合的子集. 准备 我当然先要复习下,什么是集合,什么是子集? 比较粗犷的讲法,集合就是一堆确定的东西,细致一点的讲法呢,就是由一个或多个确定的元素所构成的整体,集合中的东西称为元素. 集合有一些特性: 1.确定性 给定一个集合,任给一个元素,该元素或者属于或者不属于该集合,二者必居其一,不允许有模棱两可的情况出现. 2.互异性 一个集合中,任何两个元素都认为是不相同的,即每个元素只能出现一次.有时需要对同一元素…
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=2925 题意 n个节点,每个节点都有完全相同的n项服务. 每次可以选择一个节点,破坏该节点和相邻节点的某项服务. 问最多能完全破坏多少服务? 思路 如刘书, 直接枚举状态的子集 注意元素个数为k的集合有C^k_n个子集,那么枚举的时间复杂度为sum{c^k_n * 2^k} = 3^n…