本机spark 消费kafka失败(无法连接) 终端也不报错 就特么不消费:  但是用console的consumer  却可以 经过各种改版本 ,测试配置,最后发现 只要注释掉 kafka 配置server.properties 中的host.name=kevinhost1(我自己的主机名)  就行了…
一.准备环境: 创建Kafka Topic和HBase表 1. 在kerberos环境下创建Kafka Topic 1.1 因为kafka默认使用的协议为PLAINTEXT,在kerberos环境下需要变更其通信协议: 在${KAFKA_HOME}/config/producer.properties和config/consumer.properties下添加 security.protocol=SASL_PLAINTEXT 1.2 在执行前,需要在环境变量中添加KAFKA_OPT选项,否则ka…
1.定义 精确一次消费(Exactly-once) 是指消息一定会被处理且只会被处理一次.不多不少就一次处理. 如果达不到精确一次消费,可能会达到另外两种情况: 至少一次消费(at least once),主要是保证数据不会丢失,但有可能存在数据重复问题. 最多一次消费 (at most once),主要是保证数据不会重复,但有可能存在数据丢失问题. 如果同时解决了数据丢失和数据重复的问题,那么就实现了精确一次消费的语义了. 2. 问题如何产生 数据何时会丢失: 比如实时计算任务进行计算,到数据…
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Direct方式的offset,但是可能会导致频繁写HDFS占用IO),所以每次出现问题的时候,重启程序,而程序的消费方式是Direct,所以在程序down掉的这段时间Kafka上的数据是消费不到的,虽然可以设置offset为smallest,但是会导致重复消费,重新overwrite hive…
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补充来踩,我会第一时…
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high2011/article/details/53706446 首先很感谢原文作者,看到这篇文章我少走了很多弯路,转载此文章是为了保留一份供复习用,请大家支持原作者,移步到上面的连接去看,谢谢 一.情景:当Spark streaming程序意外退出时,数据仍然再往Kafka中推送,然而由于Kafka默认…
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章,将offset存储到Redis,既保证了并发也保证了数据不丢失,经过测试,有效. 二.使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以保存Dire…
场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户的消费情况(使用updateStateByKey来实现) 数据格式 {"user":"zhangsan","payment":8} {"user":"wangwu","payment":7}…
kafka 服务相关的命令 # 开启kafka的服务器bin/kafka-server-start.sh -daemon config/server.properties &# 创建topicbin/kafka-topics.sh --create --zookeeper bigdata-senior02.ibeifeng.com:2181 --replication-factor 1 --partitions 1 --topic orderTopic# 开启kafka的消费者bin/kafka…
对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct Approach 的数据接收,我们可以通过配置 spark.streaming.kafka.maxRatePerPartition 参数来限制每次作业中每个 Kafka 分区最多读取的记录条数. 这种限速的弊端很明显,比如假如我们后端处理能力超过了这个最大的限制,会导致资源浪费.需要对每个spark…
[TOC] 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些经验进行归纳总结.(如有任何纰漏…
Spark Streaming+Kafka 前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计.本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka在舆情项目中的应用,最后将自己在Spark Streaming+kafka的实际优化中的一些…
这篇博客是基于Spark Streaming整合Kafka-0.8.2.1官方文档. 本文主要讲解了Spark Streaming如何从Kafka接收数据.Spark Streaming从Kafka接收数据主要有两种办法,一种是基于Kafka high-level API实现的基于Receivers的接收方式,另一种是从Spark 1.3版本之后新增的无Receivers的方式.这两种方式的代码编写,性能表现都不相同.本文后续部分对这两种方式逐一进行分析. 一.基于Receiver的模式 这种模…
在Linux机器(ip:10.102.16.203)安装完kafka(参考:kafka的安装及使用),在windows上使用Java接口访问服务时(参考:Java实现Kafka的生产者.消费者),报异常:Connection refused: no further information 此时,使用telnet测试kafka的端口9092可正常访问 因此,连接失败与kafka的设置有关,具体修改如下: 1.打开kafka配置文件 server.properties,添加如下配置: 2.重启kaf…
前言 在WeTest舆情项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不断拉取数据进行词频统计. 本文首先对spark streaming嵌入kafka的方式进行归纳总结,之后简单阐述Spark streaming+kafka 在舆情项目中的应用,最后将自己在Spark Streaming+kafka 的实际优化中的一些经验进行归纳总结.(如有任何纰漏欢迎补…
有两种:Direct直连方式.Receiver方式 1.Receiver方式: 使用kafka高层次的consumer API来实现,receiver从kafka中获取的数据都保存在spark excutor的内存中,然后由Spark Streaming启动的job来处理数据.因此一旦数据量暴增,很容易造成内存溢出. 并且,在默认配置下,这种方式可能会因为底层失败而造成数据丢失,如果要启用高可靠机制,确保零数据丢失,要启用Spark Streaming的预写日志机制(Write Ahead Lo…
一.Receiver模式 1. receiver模式原理图 在SparkStreaming程序运行起来后,Executor中会有receiver tasks接收kafka推送过来的数据.数据会被持久化,默认级别为MEMORY_AND_DISK_SER_2,这个级别也 可以修改.receiver task对接收过来的数据进行存储和备份,这个过程会有节点之间的数据传输.备份完成后去zookeeper中更新消费偏移量,然后向Driver中的 receiver tracker汇报数据的位置.最后Driv…
目录 说明 整体逻辑 offset建表语句 代码实现 说明 当前处理只实现手动维护offset到mysql,只能保证数据不丢失,可能会重复 要想实现精准一次性,还需要将数据提交和offset提交维护在一个事务中 官网说明 Your own data store For data stores that support transactions, saving offsets in the same transaction as the results can keep the two in sy…
1. 提交任务的命令 spark-submit \--class <classname> \--master yarn \--deploy-mode client \--executor-memory 2g \--executor-cores 2 \--driver-memory 2g \--num-executors 2 \--queue default \--principal ocsp-yg@ASIAINFO.COM \--keytab /etc/security/keytabs/hdf…
日志格式202.108.16.254^A1546795482.600^A/cntv.gif?appId=3&areaId=8213&srcContId=2535575&areaType=1&srcContName=%E5%88%87%E7%89%B9%E9%87%8C%E6%A2%85%E5%BC%80%E4%BA%8C%E5%BA%A6+%E5%8D%B0%E5%BA%A64-1%E5%A4%A7%E8%83%9C%E6%B3%B0%E5%9B%BD%E5%96%9C%E…
Spark Streaming + Kafka direct 的 offset 存入Zookeeper并重用 streaming offset设置_百度搜索 将 Spark Streaming + Kafka direct 的 offset 存入Zookeeper并重用-Spark-about云开发 Spark & Kafka - Achieving zero data-loss spark-kafka-source/src/main/scala/com/ippontech/kafka at m…
spark与kafka整合需要引入spark-streaming-kafka.jar,该jar根据kafka版本有2个分支,分别是spark-streaming-kafka-0-8和spark-streaming-kafka-0-10. jar包分支选择原则:0.10.0>kafka版本>=0.8.2.1,选择spark-streaming-kafka-0-8:kafka版本>=0.10.0,选择spark-streaming-kafka-0-10. kafka0.8.2.1及之后版本依…
KafkaStreaming.scala文件 import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming.{Seconds, StreamingContext} import org.apache.spark.streaming.kafka.{KafkaManagerAdd, KafkaUtils} import org.json4s.Defau…
1.创建拓扑,配置KafkaSpout.Bolt KafkaTopologyBasic.java: package org.mort.storm.kafka; import org.apache.kafka.clients.consumer.ConsumerConfig; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.storm.Config; import org.apache.storm.…
问题描述: kafka是之前早就搭建好的,新建的storm集群要消费kafka的主题,由于kafka中已经记录了很多消息,storm消费时从最开始消费问题解决: 下面是摘自官网的一段话:How KafkaSpout stores offsets of a Kafka topic and recovers in case of failuresAs shown in the above KafkaConfig properties, you can control from where in th…
将数据保存到mysql,需要用到jdbc.为了提高保存速度,我写了一个连接池 1.保存到mysql的代码 package test05 import org.apache.log4j.{Level, Logger}import org.apache.spark.rdd.RDDimport org.apache.spark.sql.types._import org.apache.spark.sql._import org.apache.spark.streaming.dstream.DStrea…
本项目是为网站日志流量分析做的基础:网站日志流量分析系统,Kafka.HBase集群的搭建可参考:使用Docker搭建Spark集群(用于实现网站流量实时分析模块),里面有关于该搭建过程 本次对接Kafka及HBase是基于使用Docker搭建Spark集群(用于实现网站流量实时分析模块)搭建的6个Docker容器来实现的对接. 代码地址:https://github.com/Simple-Coder/sparkstreaming-demo 一.SparkStreaming整合Kafka 1.m…
// scalastyle:off println package org.apache.spark.examples.streaming import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.streaming._ import org.apache.spark.streaming.kafka._ import org.apache.spark.stream…
大致架构 * 每个应用实例部署一个日志agent * agent实时将日志发送到kafka * storm实时计算日志 * storm计算结果保存到hbase storm消费kafka 创建实时计算项目并引入storm和kafka相关的依赖 <dependency> <groupId>org.apache.storm</groupId> <artifactId>storm-core</artifactId> <version>1.0.…
1. 完成的场景 在很多大数据场景下,要求数据形成数据流的形式进行计算和存储.上篇博客介绍了Flink消费Kafka数据实现Wordcount计算,这篇博客需要完成的是将实时计算的结果写到redis.当kafka从其他端获取数据立刻到Flink计算,Flink计算完后结果写到Redis,整个过程就像流水一样形成了数据流的处理 2. 代码 添加第三方依赖 <dependencies> <!-- https://mvnrepository.com/artifact/org.apache.fl…