pandas之数据选择】的更多相关文章

pandas中有三种索引方法:.loc,.iloc和[],注意:.ix的用法在0.20.0中已经不建议使用了 import pandas as pd import numpy as np In [5]: dates = pd.date_range("20170101",periods=6) df1 = pd.DataFrame(np.arange(24).reshape(6,4),index=dates,columns=["A","B",&quo…
#首先创建我们的Series对象,然后合并到dataframe对象里面去 import pandas as pd import numpy as np area=pd.Series({,,,}) population=pd.Series({,,,}) data=pd.DataFrame({'area':area,'population':population})#备注:创建字典的结构时一定要遵循字典的数据结构 #也就是创建完字典之后一定要在字典的前后写上花括号,这个是一个很重要的习惯 print…
使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 获取金额最大前10项 Loc 单列数据筛选并排序 多列数据筛选并排序 按筛选条件求和(sumif, sumifs) 按筛选条件计数(countif, countifs) 按筛选条件计算均值(averageif, averageifs) 按筛选条件获取最大值和最小值 筛选和排序是Excel中使用频率…
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(index) 增加一个值变量(value) 更改数值汇总方式 增加数值汇总方式 增加一个列维度(columns) 增加多个列维度 增加数据汇总值 数据透视表是Excel中最常用的数据汇总工具,它可以根据一个或多个制定的维度对数据进行聚合.在python中同样可以通过pandas.pivot_table函数来…
很久没用pandas,有些有点忘了,转载一个比较完整的利用pandas进行数据预处理的博文:https://blog.csdn.net/u014400239/article/details/70846634 引入包和加载数据 import pandas as pd import numpy as np train_df =pd.read_csv('../datas/train.csv') # train set test_df = pd.read_csv('../datas/test.csv')…
# pandas新增数据列(直接赋值.apply.assign.分条件赋值) # pandas在进行数据分析时,经常需要按照一定条件创建新的数据列,然后进行进一步分析 # 1 直接赋值 # 2 df.apply方法 # 3 df.assig方法 # 4 按条件选择分组分别赋值 import pandas as pd # 0 读取csv数据到dataframe df = pd.read_csv("beijing_tianqi_2018.csv") print(df.head()) # 1…
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信息 按日期汇总信息 resample() 数据提取是分析师日常工作中经常遇到的需求.如某个用户的贷款金额,某个月或季度的利息总收入,某个特定时间段的贷款金额和笔数,大于5000元的贷款数量等等.本篇文章介绍如何通过python按特定的维度或条件对数据进行提取,完成数据提取需求. 准备工作 首先是准备…
使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式匹配 NaN值匹配模式 Pandas中的merge函数类似于Excel中的Vlookup,可以实现对两个数据表进行匹配和拼接的功能.与Excel不同之处在于merge函数有4种匹配拼接模式,分别为inner,left,right和outer模式. 其中inner为默认的匹配模式.本篇文章我们将介绍m…