数据分析基础之pandas & numpy】的更多相关文章

一.jupyter的常用快捷键 - 插入cell: a, b   a是after从后插入  a是before 从前插入 - 删除cell: dd, x 都可以 - 修改cell的模式:m, y - tab: 自动补全 - 执行cell: shift + enter - 打开帮助文档:shift + tab 二. numpy 1. 创建数组 import numpy as np np.array() 一维数组创建:np.array([1,2,3]) 2. 使用matplotlib获取一个numpy…
前言 numpy是一个很基础很底层的模块,其重要性不言而喻,可以说对于新手来说是最基础的入门必须要学习的其中之一.在很多数据分析,深度学习,机器学习亦或是人工智能领域的模块中,很多的底层都会用到这个模块,是必知必会的一个基础模块. 那么numpy作为这么基础的一个模块,它是干什么的,它的主要功能是处理什么的,我可以直接告诉你,numpy主要用于数组的批量运算. anaconda的安装 anaconda是一个开源的python版本,其包含了大量用于科学计算的包以及依赖项,所以数据分析或者科学计算,…
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成由C.C++.Fortran等语言编写的代码的A C API. 由于NumP…
动态可视化 数据可视化之魅D3,Processing,pandas数据分析,科学计算包Numpy,可视化包Matplotlib,Matlab语言可视化的工作,Matlab没有指针和引用是个大问题 D3.js入门指南 什么是D3?D3是指数据驱动文档(Data-Driven Documents),根据D3的官方定义: D3.js是一个JavaScript库,它可以通过数据来操作文档.D3可以通过使用HTML.SVG和CSS把数据鲜活形象地展现出来.D3严格遵循Web标准,因而可以让你的程序轻松兼容…
Pandas--"大熊猫"基础 Series Series: pandas的长枪(数据表中的一列或一行,观测向量,一维数组...) Series1 = pd.Series(np.random.randn(4)) print Series1,type(Series1) print Series1.index print Series1.values 输出结果: 0 -0.676256 1 0.533014 2 -0.935212 3 -0.940822 dtype: float64 &l…
//2019.07.19/20 python中pandas数据分析基础(数据重塑与轴向转化.数据分组与分组运算.离散化处理.多数据文件合并操作) 3.1 数据重塑与轴向转换1.层次化索引使得一个轴上拥有多个索引2.series多层次索引:(1)series的层次化索引:主要可以通过s[索引第1层:索引第二次]可以进行相应的索引(2)对于series可以通过s.unstack()函数将其转换为DataFrame具体举例代码如下:s=pd.Series(range(1,10),index=[["a&…
//2019.07.17 pyhton中pandas数据分析基础入门(一文看懂pandas), 教你迅速入门pandas数据分析模块(后面附有入门完整代码,可以直接拷贝运行,含有详细的代码注释,可以轻松帮助你入门理解) 1.1 pandas模块简介 首先,使用pandas相应的操作之前都需要导入pandas模块 import pandas as pdimport numpy as np #导入pandas和numpy模块 1.pandas中具有两种常见的数据结构:(1)Series它是指一维列表…
//2019.07.10python数据分析基础——numpy(数据结构基础) import numpy as np: 1.python数据分析主要的功能实现模块包含以下六个方面:(1)numpy——数据结构基础(2)Scipy——强大的数据计算(矩阵计算.信号处理.数理分析等)(3)matplotlib——可视化图形功能模块,实现数据的图形可视化)(4)pandas——基础数据分析方法(5)scikit-learn——强大的数据分析建模库,主要用于数据挖掘(6)Keras——人工神经网络,实现…
一共 15 篇随笔,主要是为了记录数据分析过程中的一些小 demo,分享给其他需要的网友,更为了方便以后自己查看,15 篇随笔,每篇内容基本都是以一句说明加一段代码的方式, 保持简单小巧,看起来也清晰 ,一共可以划分为三个大部分: 第一部分简单介绍数据分析,以一个小例子简单说明了什么是数据分析和 IPython 工具: 第二部分是 NumPy 的基础使用,NumPy 是 Python 包,提供科学计算功能,主要是 ndarray 数组对象: 第三部分是 pandas 的基础使用,主要是 Seri…
python和java,.net,php web平台交互最好使用web通信方式,不要使用Jypython,IronPython,这样的好处是能够保持程序模块化,解耦性好 python允许使用'''...'''方式来表示多行代码: >>> print(r'''Hello, ... Lisa!''') Hello, Lisa! >>> >>> print('''line1 ... line2 ... line3''') line1 line2 line3…
各位同学好,小编接下来为大家分享一些有关 Python 数据分析方面的内容,希望大家能够喜欢. 人工植入广告: PS:小编最近两天偷了点懒,好久没有发原创了,最近是在 CSDN 开通了一个付费专栏,用来发布去年写的没有出版的书稿,感兴趣的同学可以去看下(已经上传了一部分,第一章设置为了试读章节),主要是讲 SpringCloud 微服务方面的一些内容,整体排版下来如果是印在实体书上应该会超过 400 页,也算是一本比较厚的书,当然小编这个专栏的价格并不贵,只要 9.9 ,整体是没有经过审校的,可…
Python数据分析基础教程(第2版)(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1_FsReTBCaL_PzKhM0o6l0g 提取码:nkhw 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · NumPy是一个优秀的科学计算库,提供了很多实用的数学函数.强大的多维数组对象和优异的计算性能,不仅可以取代Matlab和Mathematica的许多功能,而且业已成为Python科学计算生态系统的重要组成部分.但与这些商业产…
最近在看时间序列分析的一些东西,中间普遍用到一个叫pandas的包,因此单独拿出时间来进行学习. 参见 pandas 官方文档 http://pandas.pydata.org/pandas-docs/stable/index.html 以及相关博客 http://www.cnblogs.com/chaosimple/p/4153083.html Pandas介绍 Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底…
Numpy库入门 从一个数据到一组数据 维度:一组数据的组织形式 一维数据:由对等关系的有序或无序数据构成,采用线性方式组织. 可用类型:对应列表.数组和集合 不同点: 列表:数据类型可以不同 数组:数据类型相同 二维数据:由多个一维数据构成,是一维数据的组合形式. 表格是典型的二维数据 多维数据:由一维或二维数据在新维度上扩展形成. 高维数据:仅利用最基本的二元关系展示数据间的复杂结构. 键值对将数据组织起来的形式 一维数据:列表和集合类型 二维数据:列表类型 多维数据:列表类型 高维数据:字…
Python数据分析工具:Pandas之Series Pandas概述Pandas是Python的一个数据分析包,该工具为解决数据分析任务而创建.Pandas纳入大量库和标准数据模型,提供高效的操作数据集所需的工具.Pandas提供大量能使我们快速便捷地处理数据的函数和方法.Pandas是字典形式,基于NumPy创建,让NumPy为中心的应用变得更加简单. 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而…
pandas的操作 pandas的拼接操作 # pandas的拼接操作 级联 pd.concat , pd.append 合并 pd.merge , pd.join 一丶pd.concat()级联 # pandas使用pd.concat函数,与np.concatenate函数类似,只是多了一些参数: # 参数说明: objs axis=0 # 方向 1 是 行, 0是 列 keys join='outer' / 'inner':表示的是级联的方式,outer会将所有的项进行级联(忽略匹配和不匹配…
数据分析03 /基于pandas的数据清洗.级联.合并 目录 数据分析03 /基于pandas的数据清洗.级联.合并 1. 处理丢失的数据 2. pandas处理空值操作 3. 数据清洗案例 4. 处理重复的数据 5. 处理异常的数据 6. 级联 7. 合并操作 1. 处理丢失的数据 两种丢失的数据: 种类 None:None是对象类型,type(None):NoneType np.nan(NaN):是浮点型,type(np.nan):float 两种丢失数据的区别: object类型比floa…
Python数据分析基础(高清版)PDF 百度网盘 链接:https://pan.baidu.com/s/1ImzS7Sy8TLlTshxcB8RhdA 提取码:6xeu 复制这段内容后打开百度网盘手机App,操作更方便哦 内容简介  · · · · · · 想深入应用手中的数据?还是想在上千份文件上重复同样的分析过程?没有编程经验的非程序员们如何能在最短的时间内学会用当今炙手可热的Python语言进行数据分析? 来自Facebook的数据专家Clinton Brownley可以帮您解决上述问题…
原文链接:https://junjiecai.github.io/posts/2016/Oct/20/none_vs_nan/ 建议从这里下载这篇文章对应的.ipynb文件和相关资源.这样你就能在Jupyter中边阅读,边测试文中的代码. python原生的None和pandas, numpy中的numpy.NaN尽管在功能上都是用来标示空缺数据.但它们的行为在很多场景下确有一些相当大的差异.由于不熟悉这些差异,曾经给我的工作带来过不少麻烦. 特此整理了一份详细的实验,比较None和NaN在不同…
---恢复内容开始--- Python数据分析基础(1) //2019.07.09python数据分析基础总结1.python数据分析主要使用IDE是Pycharm和Anaconda,最为常用和方便的是Anaconda.2.python字符串常用操作:(1)用三引号实现字符串的多行输入:(2)字符串的特征分割:可以利用split函数来进行实现,例如s是定义的字符串,那么s.split("分割特征q")则可以实现字符串s以分割特征q为隔离点分成几块:(3)字符串的长度可以用len函数,l…
数据分析04 /基于pandas的DateFrame进行股票分析.双均线策略制定 目录 数据分析04 /基于pandas的DateFrame进行股票分析.双均线策略制定 需求1:对茅台股票分析 需求2:双均线策略制定 需求1:对茅台股票分析 茅台股票分析 使用tushare包获取某股票的历史行情数据. tushare:财经数据接口包 pip install tushare 输出该股票所有收盘比开盘上涨3%以上的日期. 输出该股票所有开盘比前日收盘跌幅超过2%的日期. 假如我从2010年1月1日开…
pandas 是基于 Numpy 构建的含有更高级数据结构和工具的数据分析包 类似于 Numpy 的核心是 ndarray,pandas 也是围绕着 Series 和 DataFrame 两个核心数据结构展开的 .Series 和 DataFrame 分别对应于一维的序列和二维的表结构.pandas 约定俗成的导入方法如下: from pandas import Series,DataFrame import pandas as pd Series Series 可以看做一个定长的有序字典.基本…
4.2 通用函数:快速的元素级数组函数 通用函数(即ufunc)是一种对ndarray中的数据执行元素级运算的函数. 1)一元(unary)ufunc,如,sqrt和exp函数 2)二元(unary)ufunc,可接受2个数组,并返回一个结果数组,如add或maximum函数   3)部分ufunc可返回多个数组,如modf,是Python内置函数divmod的矢量化版本,可返回浮点数数组的整数部分和小数部分: 4)Ufuncs可以接受一个out可选参数,这样就能在数组原地进行操作. 列举部分一…
//2019.07.18pyhton中pandas数据分析学习——第二部分2.1 数据格式转换1.查看与转换表格某一列的数据格式:(1)查看数据类型:某一列的数据格式:df["列属性名称"].dtype(2)数据类型转换:某一列的数据类型转换需要用到数据转换函数:df[列属性名称]=df[列属性名称].astype("新的数据类型")代码举例如下:import numpy as npimport pandas as pddf=pd.read_excel("…
Pandas 安装 anaconda 安装: conda list pandas 查看是否已经安装 conda install pandas conda update pandas pip 安装 pip install pandas apt 安装 sudo apt-get install python-pandas 测试是否安装成功 nosetests pandases 不成功会进行提醒,可以重新安装或者更新 pandas数据结构 Series DataFrame Series 1 声明seri…
参考pandas官方文档: http://pandas.pydata.org/pandas-docs/stable/10min.html#min 1.pandas中的数据类型 Series 带有索引标记的一维数组,可以存储任何数据类型 #基本方法 >>s =pd.Series(data, index=index) >>import pandas as pd >>import numpy as np # 使用ndarray创建 >>indexs = ['a',…
参考link  https://docs.scipy.org/doc/numpy-dev/user/quickstart.html 基础 Numpy主要用于处理多维数组,数组中元素通常是数字,索引值为自然数 在Numpy中,维度被称为axes,axes的总数为rank (秩) (关于矩阵秩的概念,可以参考https://www.zhihu.com/question/21605094 与 https://www.applysquare.com/topic-cn/78QfWkiPt/) Numpy的…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) for…
numpy 库 ndarray : numpy 的关键 a = np.array([1,2,3]) # 轴 a.ndim # 数组长度 a.size # 数组的型 a.shape # 类型 a.dtype 创建数组 a = np.array([1,2,3],[2,3,4]) b = np.array((1,2,3),(4,5,6)) c = np.array([1,2,3],(4,5,6)) d = np.zeros((3,3)) e = np.ones((3,3)) f = np.arange…
numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: weight = [65.4,59.2,63.6,88.4,68.7] height = [1.73,1.68,1.71,1.89,1.79] print weight / height ** 2 执行上面代码,报错:TypeError: unsupported operand type(s) fo…