Numpy数据类型包括: int8.uint8.int16.uint16.int32.uint32.int64.uint64.float16.float32.float64.float128.complex64.complex128.complex256.bool.object.string_.unicode_ astype 显示转换数组类型的方法 例如: NumPy数组的索引和切片 索引 和python列表差不多,基本上没啥区别 切片 NumPy数组的切片出来的数值改变,就会改变NumPy…
通用函数:快速的元素级数组函数 通用函数,是指对数组中的数据执行元素级运算的函数:接受一个或多个标量值,并产生一个或多个标量值. sqrt 求平方根 np.sqrt(arr) exp 计算各元素指数 np.exp(arr) 一元函数 二元函数…
ndarray:多维数组 ndarray 每个数组元素必须是相同类型,每个数组都有shape和dtype对象. shape 表示数组大小 dtype 表示数组数据类型 array 如何创建一个数组? In[1]:import numpy as np In[2]:data = [1,2,3,4,5,6,7] In[3]:arr = np.array(data) In[3]:arr Out[3]:array([1,2,3,4,5,6,7]) 查看数组大小 arr.shape 查看数组数据类型 arr…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
随书练习,第四章  NumPy基础:数组和矢量运算 # coding: utf-8 # In[1]: # 加注释的三个方法1.用一对"""括起来要注释的代码块. # 2.用一对'''括起来要注释的代码块. # 3.选中要注释的代码,按下ctrl+/注释. # from numpy import * import numpy as np # In[2]: data=[[0.9526,-0.246,-0.8856], [0.5639,0.2379,0.9104]] # In[3]…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…