11.tensorboard网络结构】的更多相关文章

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 批次大小 batch_size = 64 # 计算一个周期一共有多少个批次 n_batch = mnist.train.num_examples // batch_size wit…
一.tensorboard网络结构 import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_data #载入数据集mnist = input_data.read_data_sets("MNIST_data",one_hot=True) #每个批次的大小batch_size = 100#计算一共有多少个批次n_batch = mnist.train.num_examples // batch…
# MNIST数据集 手写数字 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据集 mnist=input_data.read_data_sets('MNIST_data',one_hot=True) # 每个批次的大小 batch_size=100 # 计算一共有多少个批次 n_batch=mnist.train.num_examples//batch_size #…
0.Tensorflow安装 1.创建会话,启动会话 2.变量 3.Fech_feed 4.线性回归 5.非线性回归 6.MNIST数据集简单分类 7.交叉熵 8.Dropout 9.正则化 10.优化器 11.Tensorboard网络结构…
转载请注明出处:http://blog.csdn.net/Righthek 谢谢! WIFI是什么.相信大家都知道,这里就不作说明了. 我们须要做的是深入了解其工作原理,包含软硬件.网络结构等.先说明一下WIFI是遵循IEEE802.11协议的,802.11是最早被国际标准组织认可的无线局域网协议,应该是1999年,到如今都有15年了.那时候哥还在读小学.连电脑都没摸过! 太落后了...后来发展出非常多以字母为后缀的802.11标准协议,如a.b.g.n.ac等. 本章节不作802.11协议的解…
chapter1 #变量 import tensorflow as tf x = tf.Variable([1,2]) a = tf.constant([3,3]) #增加一个减法op sub = tf.subtract(x,a) #增加一个假发op add = tf.add(x,sub) #初始化所有变量 init = tf.global_variables_initializer() with tf.Session() as sess: #变量初始化操作 sess.run(init) pri…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段子是Hinton的学生在台上讲paper时,台下的机器学习大牛们不屑一顾,质问你们的东西有理论推导吗?有数学基础吗?搞得过SVM之类吗?回头来看,就算是真的,大牛们也确实不算无理取闹,是骡子是马拉出来遛遛,不要光提个概念. 时间终于到了2012年,Hinton的学生Alex Krizhevsky在寝…
反向传播(Back Propagation) 通常在设计好一个神经网络后,参数的数量可能会达到百万级别.而我们利用梯度下降去跟新参数的过程如(1).但是在计算百万级别的参数时,需要一种有效计算梯度的方法,这种方法就是反向传播(简称BP), 因此BP并不是一种新的算法,使用BP就是能够使计算梯度时更加有效率. 其中θ为神经网络的参数,为梯度. 链式法则 设有两个函数为y=g(x),z=h(y),那么要计算z对x导数,则计算过程如(2) 设有三个函数为x=g(s),y=h(s),z=k(x,y),那…