2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
有一枚硬币(不知道它是否公平),假如抛了三次,三次都是“花”: 能够说明它两面都是“花”吗? 1 贝叶斯推断 按照传统的算法,抛了三次得到三次“花”,那么“花”的概率应该是: 但是抛三次实在太少了,完全有可能是运气问题.我们应该怎么办? 托马斯·贝叶斯(1702-1761),18世纪英国数学家,1742年成为英国皇家学会会员. 贝叶斯认为在实验之前,应根据不同的情况对硬币有所假设.不同的假设会得到不同的推断. 比如和滑不溜手的韦小宝玩.韦小宝可能拿出各种做过手脚的硬币,让我们猜不透,只能假设对硬…
1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的测试用例,这个用例通过了.接着,他用了一个稍微复杂的测试用例,再次通过了.接下来更难的测试用例也通过了,这时,小明开始觉得这段代码出现bug的可能性大大大大降低了.... 上面这段白话文中,已经包含了最质朴的贝叶斯思想了!简单来说,贝叶斯推断是通过新得到的证据不断地更新我们的信念. 贝叶斯推断很少会…
贝叶斯推断之最大后验概率(MAP) 本文详细记录贝叶斯后验概率分布的数学原理,基于贝叶斯后验概率实现一个二分类问题,谈谈我对贝叶斯推断的理解. 1. 二分类问题 给定N个样本的数据集,用\(X\)来表示,每个样本\(x_n\)有两个属性,最终属于某个分类\(t\) \(t=\left\{0,1\right\}\) \(\mathbf{x_n}=\begin{pmatrix}x_{n1} \\ x_{n2} \\ \end{pmatrix}\), 假设模型参数\(w=\begin{pmatrix}…
贝叶斯推理的方法非常自然和极其强大.然而,大多数图书讨论贝叶斯推理,依赖于非常复杂的数学分析和人工的例子,使没有强大数学背景的人无法接触.<贝叶斯方法概率编程与贝叶斯推断>从编程.计算的角度来介绍贝叶斯推理,把贝叶斯理论和编程实践结合起来,使大多数程序员都可以入门并掌握.通过强大的Python语言库PyMC,以及相关的Python工具,包括NumPy\SciPy\Matplotlib讲解了概率编程.通过介绍的方法,只需付出很少的努力,就能掌握有效的贝叶斯分析方法. 学习参考: <贝叶斯方…
title: [概率论]2-3:贝叶斯定理(Bayes' Theorem) categories: Mathematic Probability keywords: Bayes' Theorem 贝叶斯公式 Law of total Probability 全概率公式 toc: true date: 2018-02-02 10:10:45 Abstract: 本文是关于Bayes' Theorem 的介绍性知识 Keywords: Bayes' Theorem,Law of total Prob…
之前忘记强调了一个重要差别:条件概率链式法则和贝叶斯网络链式法则的差别 条件概率链式法则 贝叶斯网络链式法则,如图1 图1 乍一看非常easy认为贝叶斯网络链式法则不就是大家曾经学的链式法则么,事实上不然,后面详述. 上一讲谈到了概率分布的因式分解 \begin{array}{l}P\left({X,Y\left| Z \right.} \right) = P\left( {X\left| Z \right.} \right)P\left({Y\left| Z \right.} \right)\…
处女文献给我最喜欢的算法了 ⊙▽⊙ ---------------------------------------------------我是机智的分割线---------------------------------------------------- [important] 阅读之前你需要了解:1.概率论与数理统计基础 2.基本的模式识别概念 [begin] 贝叶斯决策论是模式分类问题最基础的概念,其中朴素贝叶斯更是由于其简洁成为学习模式分类问题的基础. 朴素贝叶斯的理论基础:源于概率论…
前言 AI时代的到来一下子让人感觉到数学知识有些捉襟见肘,为了不被这个时代淘汰,我们需要不断的学习再学习.其中最常见的就是贝叶斯定理,这个定理最早由托马斯·贝叶斯提出. 贝叶斯方法的诞生源于他生前为解决一个“逆向概率”问题写的一篇文章,而这篇文章是在他死后才由他的一位朋友发表出来的.在贝叶斯写这篇论文之前,人们已经能够计算“正向概率”,如“袋子里N个白球,M个黑球,随机抓一个,抓到白球的概率”.而随之而来的另一个反过来的问题就是 “如果我们事先并不知道袋子里面黑白球的比例,而是闭着眼睛摸出一个(…
这里用Venn diagram来不严谨地推导一下贝叶斯定理. 假设A和B为两个不相互独立的事件. 交集(intersection):  上图红色部分即为事件A和事件B的交集. 并集(union):  由Venn diagram可以看出,在事件B已经发生的情况下,事件A发生的概率为事件A和事件B的交集除以事件B: 同理,在事件A已经发生的情况下,事件B发生的概率为事件A和事件B的交集除以事件A: 注:表示 A,B 事件同时发生的概率,如果 A 和 B 是相互独立的两个事件,那么:. 由上面的公式可…