1.直接奉献代码,后期有入门更新,之前一直在学的是TensorFlow, import torch from torch.autograd import Variable import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np x_data = np.arange(-2*np.pi,2*np.pi,0.1).reshape(-1,1) y_data = np.sin(x_data).re…
面向对象编程: 面向对象顾名思义,就是把组织代码的粒度从函数级别抽象到对象级别,对象是通过类来生成的,类可以想象为模板或进本框架而对象是在原有模板或框架的基础上增加详细信息的实体,类,有分类.聚类的含义,也就是说把世间万物进行区分,有相同特点的找到这些相同点构成一个模板,以备今后使用.实例化就是从类生成对象的过程. 类的三大特性: 封装.继承和多态 封装:编程的根本结果是实现了数据的组织.传递.转换与呈现,面向对象编程中,对数据的存放和传递进行了抽象,数据不再以单点存在,而是保存在对象中,传递的…
1.事件作为参数传递 public class Para { // 定义一种委托(事件类型),可以在此定义这个事件的返回值和参数 public delegate object GetDataMethodAction(); // 使用这个事件类型接收参数 public GetDataMethodAction GetDataMethod { get; set; } } public void Main() { // 构建事件参数 Para para = new Para(){ GetDataMeth…
LinearRegression(线性回归) 2019-02-20  20:25:47 1.线性回归简介 线性回归定义: 百科中解释 我个人的理解就是:线性回归算法就是一个使用线性函数作为模型框架($y = w*x + b$).并通过优化算法对训练数据进行训练.最终得出最优(全局最优解或局部最优)参数的过程. y:我们需要预测的数值: w:模型的参数(即我们需要通过训练调整的的值) x:已知的特征值 b:模型的偏移量 我们的目的是通过已知的x和y,通过训练找出合适的参数w和b来模拟x与y之间的关…
线性回归模型(Linear Regression)及Python实现 http://www.cnblogs.com/sumai 1.模型 对于一份数据,它有两个变量,分别是Petal.Width和Sepal.Length,画出它们的散点图.我们希望可以构建一个函数去预测Sepal.Length,当我们输入Petal.Width时,可以返回一个预测的Sepal.Length.从散点图可以发现,可以用一条直线去拟合,这时我们可以构建一元线性回归模型:hθ(x) = θ0 + θ1x1 (x1= Pe…
import numpy as np from sklearn import datasets,linear_model from sklearn.model_selection import train_test_split def load_data(): diabetes = datasets.load_diabetes() return train_test_split(diabetes.data,diabetes.target,test_size=0.25,random_state=0…
 内容概要 怎样使用pandas读入数据 怎样使用seaborn进行数据的可视化 scikit-learn的线性回归模型和用法 线性回归模型的评估測度 特征选择的方法 作为有监督学习,分类问题是预測类别结果,而回归问题是预測一个连续的结果. 1. 使用pandas来读取数据 Pandas是一个用于数据探索.数据处理.数据分析的Python库 In [1]: import pandas as pd In [2]: # read csv file directly from a URL and…
线性回归模型 "回归"这个词,既是Regression算法的名称,也代表了不同的计算结果.当然结果也是由算法决定的. 不同于前面讲过的多个分类算法或者逻辑回归,线性回归模型的结果是一个连续的值. 实际上我们第一篇的房价预测就属于线性回归算法,如果把这个模型用于预测,结果是一个连续值而不是有限的分类. 从代码上讲,那个例子更多的是为了延续从TensorFlow 1.x而来的解题思路,我不想在这个系列的第一篇就给大家印象,TensorFlow 2.0成为了完全不同的另一个东西.在Tenso…
来源商业新知号网,原标题:用Python的Scikit-Learn库实现线性回归 回归和分类是两种 监督 机器 学习算法, 前者预测连续值输出,而后者预测离散输出. 例如,用美元预测房屋的价格是回归问题,而预测肿瘤是恶性的还是良性的则是分类问题. 在本文中,我们将简要研究线性回归是什么,以及如何使用Scikit-Learn(最流行的Python机器学习库之一)在两个变量和多个变量的情况下实现线性回归. 线性回归理论 代数学中,术语“线性”是指两个或多个变量之间的线性关系. 如果在二维空间中绘制两…
来自 http://blog.csdn.net/jasonding1354/article/details/46340729 内容概要 如何使用pandas读入数据 如何使用seaborn进行数据的可视化 scikit-learn的线性回归模型和使用方法 线性回归模型的评估测度 特征选择的方法   作为有监督学习,分类问题是预测类别结果,而回归问题是预测一个连续的结果.   1. 使用pandas来读取数据 Pandas是一个用于数据探索.数据处理.数据分析的Python库 In [1]: im…