问题 训练神经网络是一个很复杂的过程,在前面提到了深度学习中常用的激活函数,例如ELU或者Relu的变体能够在开始训练的时候很大程度上减少梯度消失或者爆炸问题.但是却不能保证在训练过程中不出现该问题,例如在训练过程中每一层输入数据分布发生了改变我们就需要使用更小的learning rate去训练,这一现象被成为internal covariate shift,Batch Normalization能够很好的解决这一问题.目前该算法已经被广泛应用在深度学习模型中,该算法的强大至于在于: 可以选择一…
之前一直和小伙伴探讨batch normalization层的实现机理,作用在这里不谈,知乎上有一篇paper在讲这个,链接 这里只探究其具体运算过程,我们假设在网络中间经过某些卷积操作之后的输出的feature map的尺寸为4×3×2×2 4为batch的大小,3为channel的数目,2×2为feature map的长宽 整个BN层的运算过程如下图 上图中,batch size一共是4, 对于每一个batch的feature map的size是3×2×2 对于所有batch中的同一个cha…
本节涉及: 保存TensorFlow 的模型供其他语言使用 java中调用模型并进行预测计算 一.保存TensorFlow 的模型供其他语言使用 如果用户选择“y” ,则执行下面的步骤: 判断程序执行目录下是否有 export 目录,如果有,调用 shutil 包中的 rmtress 函数将其删除,以免冲突 builder = tf .saved_model . builder . SavedModelBuilder ("export")   ———— 用于生成保存神经网络模型的对象b…
基于Anaconda安装Tensorflow 并实现在Spyder中的应用 Anaconda可隔离管理多个环境,互不影响.这里,在anaconda中安装最新的python3.6.5 版本. 一.安装 Anaconda 1. 下载地址: https://www.anaconda.com/distribution/#windows 选择需要的版本下载 2.双击下载好的 Anaconda2-5.2.0-Windows-x86_64.exe文件,出现如下界面,点击 Next 即可. 点击next: I…
Pytorch中的BatchNorm的API主要有: 1 torch.nn.BatchNorm1d(num_features, 2 3 eps=1e-05, 4 5 momentum=0.1, 6 7 affine=True, 8 9 track_running_stats=True) 一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层.通常用model.t…
深度学习中优化操作: dropout l1, l2正则化 momentum normalization 1.为什么Normalization?     深度神经网络模型的训练为什么会很困难?其中一个重要的原因是,深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新.为了训好模型,我们需要非常谨慎地去设定学习率.初始化权重.以及尽可能细致的参数更新策略. 对于每一层网络得到输出向…
tensorflow学习笔记——使用TensorFlow操作MNIST数据(1) 一:神经网络知识点整理 1.1,多层:使用多层权重,例如多层全连接方式 以下定义了三个隐藏层的全连接方式的神经网络样例代码: import tensorflow as tf l1 = tf.matmul(x, w1) l2 = tf.matmul(l1, w2) y = tf.matmul(l2,w3) 1.2,激活层:引入激活函数,让每一层去线性化 激活函数有多种,例如常用的 tf.nn.relu  tf.nn.…
续集请点击我:tensorflow学习笔记——使用TensorFlow操作MNIST数据(2) 本节开始学习使用tensorflow教程,当然从最简单的MNIST开始.这怎么说呢,就好比编程入门有Hello World,机器学习入门有MNIST.在此节,我将训练一个机器学习模型用于预测图片里面的数字. 开始先普及一下基础知识,我们所说的图片是通过像素来定义的,即每个像素点的颜色不同,其对应的颜色值不同,例如黑白图片的颜色值为0到255,手写体字符,白色的地方为0,黑色为1,如下图. MNIST…
[背景] 在scikit-learn基础上系统结合数学和编程的角度学习了机器学习后(我的github:https://github.com/wwcom614/machine-learning),意犹未尽,打算再借势学习下深度学习TensorFlow.无奈安装之后遇到了这个问题,耽误了几个小时才得以解决. 我发现这是个很多人开始TensorFlow之旅普遍遇到的问题,而且是很多人尝试了网上很多方法都未解决的问题.排坑过程很烦,主要是各种尝试很耗时间,最终自己找到了原因,解决了问题,共享给各位同学,…
​ 前言 公众号在前面发过三篇分别对BatchNorm解读.分析和总结的文章(文章链接在文末),阅读过这三篇文章的读者对BatchNorm和归一化方法应该已经有了较深的认识和理解.在本文将介绍一篇关于BatchNorm举足轻重的论文,这篇论文对进行了很多实验,非常全面地考虑了BatchNorm中的Batch. 欢迎关注公众号 CV技术指南 ,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读. Motivation BatchNorm 区别于其他深度学习算子的关键因素是它对批量数据而不是单个…