DeepDream是一种艺术性的图像修改技术,它用到了卷积神经网络学到的表示,DeepDream由Google于2015年发布.这个算法与卷积神经网络过滤器可视化技术几乎相同,都是反向运行一个卷积神经网络:对卷积神经网络的输入做梯度上升,以便将卷积神经网络靠顶部的某一层的某个过滤器激活最大化.但有以下几个简单的区别: 使用DeepDream,我们尝试将所有层的激活最大化,而不是将某一层的激活最大化,因此需要同时将大量特征的可视化混合在一起 不是从空白的.略微带有噪声的输入开始,而是从现有的图像开…
变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以探索声音.音乐甚至文本的潜在空间: VAE非常适合用于学习具有良好结构的潜在空间,其中特定方向表示数据中有意义的变化轴;  GAN生成的图像可能非常逼真,但它的潜在空间可能没有良好结构,也没有足够的连续型.   自编码,简单来说就是把输入数据进行一个压缩和解压缩的过程. 原来有很多 Feature,…
生成式对抗网络(GAN,generative adversarial network)由Goodfellow等人于2014年提出,它可以替代VAE来学习图像的潜在空间.它能够迫使生成图像与真实图像在统计上几乎无法区别,从而生成相当逼真的合成图像. 1.GAN是什么? 简单来说就是由两部分组成,生成器generator网络和判别器discriminator网络.一部分不断进化,使其对立部分也不断进化,实现共同进化的过程. 对GAN的一种直观理解是,想象我们想要试图生成一个二次元头像.一开始,我们并…
本书的前四章旨在介绍开始构建生成式深度学习模型所需的核心技术.在第1章中,我们将首先对生成式建模领域进行广泛的研究,并从概率的角度考虑我们试图解决的问题类型.然后,我们将探讨我们的基本概率生成模型的第一个例子,并分析为什么随着生成式任务的复杂性增长,可能需要部署深度学习技术.第2章提供了开始构建更复杂的生成模型所需的深度学习工具和技术的指南.这旨在成为深度学习的实用指南,而不是对该领域的理论分析.特别是,我将介绍Keras,一个构建神经网络的框架,可用于构建和训练已在文献中发表的一些最先进的深度…
http://geek.csdn.net/news/detail/138968 Google近日发布了TensorFlow 1.0候选版,这第一个稳定版将是深度学习框架发展中的里程碑的一步.自TensorFlow于2015年底正式开源,距今已有一年多,这期间TensorFlow不断给人以惊喜.在这一年多时间,TensorFlow已从初入深度学习框架大战的新星,成为了几近垄断的行业事实标准.本文节选自<TensorFlow实战>第二章. 主流深度学习框架对比 深度学习研究的热潮持续高涨,各种开源…
这篇文章详细介绍在centOS7.5上搭建基于keras/tensorflow的深度学习环境,该环境可用于实际生产.本人现在非常熟练linux(Ubuntu/centOS/openSUSE).windows上该环境的搭建 :) 前面三篇博客代码实现均基于该环境(开发或者测试过): [AI开发]Python+Tensorflow打造自己的计算机视觉API服务 [AI开发]基于深度学习的视频多目标跟踪实现 [AI开发]视频多目标跟踪高级版 运行环境 1) centOS 7.5 ,不要安装GUI桌面:…
×下面资源个人全都跑了一遍,不会出现仅是字符而无法运行的状况,运行环境: Geoffrey Hinton在多次访谈中讲到深度学习研究人员不要仅仅只停留在理论上,要多编程.个人在学习中也体会到单单的看理论到头来还是一头雾水,只有不断和编程结合,才能检验自己是否掌握了这门知识.但是作为初学者应先以跑通理论为第一要义,所以可以使用有关框架,降低入门难度,避免重复造轮子. 一.TensorFlow 资源地址: 资源介绍: 资源目录: 二.PyTorch 资源地址: 资源介绍: 这个资源为深度学习研究人员…
这个系列文章主要记录使用keras框架来搭建深度学习模型的学习过程,其中有一些自己的想法和体会,主要学习的书籍是:Deep Learning with Python,使用的IDE是pycharm. 在深度学习中的深度指的是数据模型中包含着的多个层次,而深度学习是对一堆数值做数学运算,但是这种数学运算是高纬度的,是大量的:在这些数学运算中,深度学习中的层通过反馈(比如后向传播)来对参数进行调整,然后再进行计算.如此反复数次,从而越来越接近我们所给出的正确结果.而在这个过程中,深度学习中的每个层所学…
本文第一部分是对数据处理中one-hot编码的讲解,第二部分是对二分类模型的代码讲解,其模型的建立以及训练过程与上篇文章一样:在最后我们将训练好的模型保存下来,再用自己的数据放入保存下来的模型中进行分类(在后面的文章中会详细讨论如何使用自己的数据去训练模型,或者让保存下来的模型去处理自己的数据).第三部分是多分类模型,多分类的过程和二分类很相似,只是在代码中有些地方需要做出调整. 第二部分是本文的重点. 一:one-hot编码 通过第一篇文章我们知道,对于使用keras来进行深度学习网络的搭建,…
内容简介 本书由Keras之父.现任Google人工智能研究员的弗朗索瓦•肖莱(François Chollet)执笔,详尽介绍了用Python和Keras进行深度学习的探索实践,涉及计算机视觉.自然语言处理.生成式模型等应用.书中包含30多个代码示例,步骤讲解详细透彻.由于本书立足于人工智能的可达性和大众化,读者无须具备机器学习相关背景知识即可展开阅读.在学习完本书后,读者将具备搭建自己的深度学习环境.建立图像识别模型.生成图像和文字等能力. 作者简介 [作者简介] 弗朗索瓦•肖莱(Franç…
摘录自:CIPS2016 中文信息处理报告<第一章 词法和句法分析研究进展.现状及趋势>P4 CIPS2016 中文信息处理报告下载链接:http://cips-upload.bj.bcebos.com/cips2016.pdf 之前写过一篇中文分词总结,那么在那篇基础上,通过在CIPS2016的摘录进行一些拓展.可参考上篇:NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与比较 NLP词法.句法.语义.语篇综合系列: NLP+词法系列(一)︱中文分词技术小结.几大分词引擎的介绍与…
from:https://www.jiqizhixin.com/articles/2018-08-11-11 可以通过分析流量包来检测TOR流量.这项分析可以在TOR 节点上进行,也可以在客户端和入口节点之间进行.分析是在单个数据包流上完成的.每个数据包流构成一个元组,这个元组包括源地址.源端口.目标地址和目标端口. 提取不同时间间隔的网络流,并对其进行分析.G.He等人在他们的论文“从TOR加密流量中推断应用类型信息”中提取出突发的流量和方向,以创建HMM(Hidden Markov Mode…
Python 程序员深度学习的"四大名著": 这四本书着实很不错!我们都知道现在机器学习.深度学习的资料太多了,面对海量资源,往往陷入到"无从下手"的困惑出境.而且并非所有的书籍都是优质资源,浪费大量的时间是得不偿失的. 给大家推荐这几本好书并做简单介绍: 1.<Deep Learning with Python> 推荐指数:★★★★☆ 本书自出版以来收到众多好评,因为是 Keras 作者写的书,所以全书基本围绕着 Keras 讲深度学习的各种实现,从…
新增了六个教程: TensorFlow 2 和 Keras 高级深度学习 零.前言 一.使用 Keras 入门高级深度学习 二.深度神经网络 三.自编码器 四.生成对抗网络(GAN) 五.改进的 GAN 六.纠缠表示 GAN 七.跨域 GAN 八.变分自编码器(VAE) 九.深度强化学习 十.策略梯度方法 十一.对象检测 十二.语义分割 十三.使用互信息的无监督学习 GCP 上的人工智能实用指南 零.前言 第 1 节:Google Cloud Platform 的基础 一.AI 和 GCP 概述…
Keras 重要特性 相同的代码可以在 CPU 或 GPU 上无缝切换运行. 具有用户友好的 API,便于快速开发深度学习模型的原型. 内置支持卷积网络(用于计算机视觉).循环网络(用于序列处理)以及二者的任意组合. 支持任意网络架构:多输入或多输出模型.层共享.模型共享等.这也就是说, Keras能够构建任意深度学习模型,无论是生成式对抗网络还是神经图灵机     Keras 有三个后端实现:  TensorFlow 后端.Theano 后端和微软认知工具包( CNTK, Microsoft…
在深度学习中,当数据量不够大时候,常常采用下面4中方法: 1. 人工增加训练集的大小. 通过平移, 翻转, 加噪声等方法从已有数据中创造出一批"新"的数据.也就是Data Augmentation 2. Regularization. 数据量比较小会导致模型过拟合, 使得训练误差很小而测试误差特别大. 通过在Loss Function 后面加上正则项可以抑制过拟合的产生. 缺点是引入了一个需要手动调整的hyper-parameter. 详见 https://www.wikiwand.c…
特别棒的一篇文章,仍不住转一下,留着以后需要时阅读 基于Theano的深度学习(Deep Learning)框架Keras学习随笔-01-FAQ…
前期回顾: 深度学习实践系列(1)- 从零搭建notMNIST逻辑回归模型 深度学习实践系列(2)- 搭建notMNIST的深度神经网络 在第二篇系列中,我们使用了TensorFlow搭建了第一个深度神经网络,并且尝试了很多优化方式去改进神经网络学习的效率和提高准确性.在这篇文章,我们将要使用一个强大的神经网络学习框架Keras配合TensorFlow重新搭建一个深度神经网络. 什么是Keras? 官方对于Keras的定义如下: "Keras: Deep Learning library for…
1.关于Keras 1)简介 Keras是由纯python编写的基于theano/tensorflow的深度学习框架. Keras是一个高层神经网络API,支持快速实验,能够把你的idea迅速转换为结果,如果有如下需求,可以优先选择Keras: a)简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性) b)支持CNN和RNN,或二者的结合                 c)无缝CPU和GPU切换 2)设计原则 a)用户友好:Keras是为人类而不是天顶星人设计的API.用户的使…
本文主要是使用[监督学习]实现一个图像分类器,目的是识别图片是猫还是狗. 从[数据预处理]到 [图片预测]实现一个完整的流程, 当然这个分类在 Kaggle 上已经有人用[迁移学习](VGG,Resnet)做过了,迁移学习我就不说了,我自己用 Keras + Tensorflow 完整的实现了一遍. 准备工作: 数据集:Dogs vs. Cats注册激活困难,自己想想办法,Ps:实在注册不了百度云有下载自己搜搜 使用编程语言:当然是Python 3,你问我为什么,当然是人生苦短. 使用机器学习库…
一个可扩展的深度学习框架的Python实现(仿keras接口) 动机 keras是一种非常优秀的深度学习框架,其具有较好的易用性,可扩展性.keras的接口设计非常优雅,使用起来非常方便.在这里,我将仿照keras的接口,设计出可扩展的多层感知机模型,并在多维奇偶校验数据上进行测试. 本文实现的mlp的可扩展性在于:可以灵活指定神经网络的层数,每层神经元的个数,每层神经元的激活函数,以及指定神经网络的损失函数 本文将尽量使用numpy的矩阵运算用于训练网络,公式的推导过程可以参考此篇博客,细节上…
今年 1 月 12 日,Keras 作者 François Chollet‏ 在推特上表示因为中文读者的广泛关注,他已经在 GitHub 上展开了一个 Keras 中文文档项目.而昨日,François Chollet‏ 再一次在推特上表示 Keras 官方文档已经基本完成!他非常感谢翻译和校对人员两个多月的不懈努力,也希望 Keras 中文使用者能继续帮助提升文档质量. 这一次发布的是 Keras 官方中文文档,它得到了严谨的校对而提升了整体质量.但该项目还在进行中,虽然目前已经上线了很多 A…
在深度学习中,批量归一化(batch normalization)以及对损失函数加一些正则项这两类方法,一般可以提升模型的性能.这两类方法基本上都属于权重约束,用于减少深度学习神经网络模型对训练数据的过拟合,并改善模型对新数据的性能.       目前,存在多种类型的权重约束方法,例如最大化或单位向量归一化,有些方法也必须需要配置超参数.       在本教程中,使用Keras API,用于向深度学习神经网络模型添加权重约束以减少过拟合.       完成本教程后,您将了解: 如何使用Keras…
1.下载安装Keras 如果你是安装的Anaconda组合套件,可以直接在Prompt上执行安装命令:pip install keras 注意:最下面为Successfully...表示安装成功! 2.简介 Keras为图片数据输入提供了一个很好的接口,即Keras.preprocessing.image.ImageDataGenerator类,该类生成一个数据生成器Generator对象,依照循环批量生成对应于图像信息的多维矩阵.根据后台运行环境的不同(例如:TensorFlow,Theano…
TheanoTheano在深度学习框架中是祖师级的存在.Theano基于Python语言开发的,是一个擅长处理多维数组的库,这一点和numpy很像.当与其他深度学习库结合起来,它十分适合数据探索.它为执行深度学习中大规模神经网络算法的运算所设计.其实,它可以被更好的理解为一个数学表达式的编辑器:用符号式语言定义你想要的结果,该框架会对你的程序进行编译,来高效运行于GPU或CPU.它与后来出现的TensorFlow功能十分相似,因而两者常常被放在一起比较.它们本身都偏底层,同样的,Theano 像…
大家好,我禅师的助理兼人工智能排版住手助手条子.可能非常多人都不知道我.由于我真的难得露面一次,天天给禅师做底层工作. wx_fmt=jpeg" alt="640? wx_fmt=jpeg" /> 今天条子最终也熬到这一天! 最终也有机会来为大家写文章了! 激动的我啊.都忘了9月17号中午和禅师在我厂门口兰州料理吃饭.禅师要了一碗牛拉+一瓶可乐+一碟凉菜,总共30元.让我结账至今还没还钱的事儿了.真的,激动的我一点儿都想不起来了. 国庆长假就要開始了,作为人工智能头条的…
1 神经传递的原理 人类的神经元传递及其作用: 这里有几个关键概念: 树突 - 接受信息 轴突 - 输出信息 突触 - 传递信息 将其延伸到神经元中,示意图如下: 将上图整理成数学公式,则有 y = activation function( x1*w1 + x2*w2 + x3*w3 + b ) 相应说明: x - 输入值,仿真输入神经元,上图中有:x1.x2.x3 w - 权重值,仿真输入神经元轴突,传送信息,上图中有:w1.w2.w3 b - 偏差值,仿真接受神经元树突,代表接受神经元容易被…
https://blog.csdn.net/a819825294/article/details/51334397 1.介绍 Keras是基于Theano的一个深度学习框架,它的设计参考了Torch,用Python语言编写,是一个高度模块化的神经网络库,支持GPU和CPU.keras官方文档地址 地址 2.流程 先使用CNN进行训练,利用Theano函数将CNN全连接层的值取出来,给SVM进行训练 3.结果示例 因为这里只是一个演示keras&SVM的demo,未对参数进行过多的尝试,结果一般…
一.不用Sequential模型的解决方案:keras函数式API 1.多输入模型 简单的问答模型 输入:问题 + 文本片段 输出:回答(一个词) from keras.models import Model from keras import layers from keras import Input text_vocabulary_size = 10000 question_vocabulary_size = 10000 answer_vocabulary_size = 500 text_…
目录 基于 Keras 用深度学习预测时间序列 问题描述 多层感知机回归 多层感知机回归结合"窗口法" 改进方向 扩展阅读 本文主要参考了 Jason Brownlee 的博文 Time Series Prediction With Deep Learning in Keras 原文使用 python 实现模型,这里是用 R 基于 Keras 用深度学习预测时间序列 时间序列预测一直以来是机器学习中的一个难题. 在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建神经网络…