In [5]: from sklearn import preprocessing ...: le =preprocessing.LabelEncoder() ...: le.fit(["paris", "paris", "tokyo", "amsterdam"]) ...: print('标签个数:%s'% le.classes_) ...: print('标签值标准化:%s' % le.transform(["t…
在训练模型之前,我们通常都要对训练数据进行一定的处理.将类别编号就是一种常用的处理方法,比如把类别"男","女"编号为0和1.可以使用sklearn.preprocessing中的LabelEncoder处理这个问题. 作用 将n个类别编码为0~n-1之间的整数(包含0和n-1). 例子 假设我们要对性别数据进行编码,则数据可以分为两种情况:无NaN,有NaN. 首先导入要使用的包 import numpy as np import pandas as pd fro…
https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-s…
sklearn实现---归类为5大类 sklearn.preprocessing.scale()(最常用,易受异常值影响) sklearn.preprocessing.StandardScaler() sklearn.preprocessing.minmax_scale()(一般缩放到[0,1]之间,若新数据集最大最小值范围有变,需重新minmax_scale) sklearn.preprocessing.MinMaxScaler() sklearn.preprocessing.maxabs_s…
数据预处理 标准化 (Standardization) 规范化(Normalization) 二值化 分类特征编码 推定缺失数据 生成多项式特征 定制转换器 1. 标准化Standardization(这里指移除均值和方差标准化) 标准化是很多数据分析问题的一个重要步骤,也是很多利用机器学习算法进行数据处理的必要步骤. 1.1 z-score标准化 z-score标准化指的是将数据转化成均值为0方差为1的高斯分布,也就是通常说的z-score标准化,但是对于不服从标准正态分布的特征,这样做效果会…
from sklearn.preprocessing import LabelEncoder def gen_label_encoder(): labels = ['BB', 'CC'] le = LabelEncoder() le.fit(labels) print 'le.classes_', le.classes_ for label in le.classes_: print label, le.transform([label])[0] joblib.dump(le, 'data/la…
sklearn.preprocessing 下除了提供 OneHotEncoder 还提供 LabelEncoder(简单地将 categorical labels 转换为不同的数字): 1. 简单区别 Panda's get_dummies vs. Sklearn's OneHotEncoder() :: What is more efficient? sklearn.preprocessing 下的 OneHotEncoder 不可以直接处理 string,如果数据集中的某些特征是 stri…
查阅了很多资料,逐渐知道了one hot 的编码,但是始终没理解sklearn. preprocessing.OneHotEncoder()如何进行fit()的?自己琢磨了一下,后来终于明白是怎么回事了. 先看one hot 的编码的理解:引用至:https://blog.csdn.net/wy250229163/article/details/52983760 网上关于One-hot编码的例子都来自于同一个例子,而且结果来的太抖了.查了半天,终于给搞清楚这个独热编码是怎么回事了,其实挺简单的,…
sklearn.preprocessing.LabelBinarizer…
预处理的几种方法:标准化.数据最大最小缩放处理.正则化.特征二值化和数据缺失值处理. 知识回顾: p-范数:先算绝对值的p次方,再求和,再开p次方. 数据标准化:尽量将数据转化为均值为0,方差为1的数据,形如标准正态分布(高斯分布). 标准化(Standardization) 公式为:(X-X_mean)/X_std 计算时对每个属性/每列分别进行. 将数据按其属性(按列进行)减去其均值,然后除以其方差.最后得到的结果是,对每个属性/每列来说所有数据都聚集在0附近,方差值为1. sklearn中…
Having said that, you can query sklearn.preprocessing.StandardScaler for the fit parameters: scale_ : ndarray, shape (n_features,) Per feature relative scaling of the data. New in version 0.17: scale_ is recommended instead of deprecated std_. mean_…
>>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]) >>> enc.n_values_ array([2, 3, 4]) >>> enc.feature_indices_ array([0, 2, 5…
1. one hot encoder sklearn.preprocessing.OneHotEncoder one hot encoder 不仅对 label 可以进行编码,还可对 categorical feature 进行编码: >>> from sklearn.preprocessing import OneHotEncoder >>> enc = OneHotEncoder() >>> enc.fit([[0, 0, 3], [1, 1, 0…
  关于数据预处理的几个概念 归一化 (Normalization): 属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 常用的最小最大规范化方法(x-min(x))/(max(x)-min(x)) 除了上述介绍的方法之外,另一种常用的方法是将属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现. 使用这种方法的目的包括: 1.对于方差非常小的属性可以…
原文链接:https://blog.csdn.net/weixin_39175124/article/details/79463993 数据在前处理的时候,经常会涉及到数据标准化.将现有的数据通过某种关系,映射到某一空间内.常用的标准化方式是,减去平均值,然后通过标准差映射到均至为0的空间内.系统会记录每个输入参数的平均数和标准差,以便数据可以还原. 很多ML的算法要求训练的输入参数的平均值是0并且有相同阶数的方差例如:RBF核的SVM,L1和L2正则的线性回归 sklearn.preproce…
Recently, I was writing module of feature engineering, i found two excellently packages -- tsfresh and sklearn. tsfresh has been specialized for data of time series, tsfresh mainly include two modules, feature extract, and feature select: from tsfres…
C++11中using关键字的主要作用是:为一个模板库定义一个别名. 文章链接:派生类中使用using别名改变基类成员的访问权限  一.<Effective Modern C++>里有比较完整的解释 各个作用 /*定义别名*/ template<class T> using Tlist = std::list<T>; using Tlist = std::list<char>; Tlist listChar; //typedef void (*df)() u…
train_test_split函数用于将数据划分为训练数据和测试数据. train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train_data和test_data,形式为: X_train,X_test, y_train, y_test = train_test_split(train_data ,  train_target ,  test_size=0.4,   random_state=0) 参数解释:train_data:所要划分的样本特征集trai…
#1.使用朴素贝叶斯模型对iris数据集进行花分类 #尝试使用3种不同类型的朴素贝叶斯: #高斯分布型,多项式型,伯努利型 from sklearn import datasets iris=datasets.load_iris() from sklearn.naive_bayes import GaussianNB #高斯分布型 gnb=GaussianNB() pred=gnb.fit(iris.data,iris.target) y_pred=gnb.predict(iris.data)…
参考: http://scikit-learn.org/stable/modules/preprocessing.html…
. LabelEncode(),标签值编码用在将一些类别型的列进行编码,方便用于训练…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
One-Hot 编码即独热编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效.这样做的好处主要有:1. 解决了分类器不好处理属性数据的问题: 2. 在一定程度上也起到了扩充特征的作用. 将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码.离散特征进行one-hot编码,编码后的特征,其实每一维…
刚入手data science, 想着自己玩一玩kaggle,玩了新手Titanic和House Price的 项目, 觉得基本的baseline还是可以写出来,但是具体到一些细节,以至于到能拿到的出手的成绩还是需要理论分析的. 本文旨在介绍kaggle比赛到各种原理与技巧,当然一切源自于coursera,由于课程都是英文的,且都比较好理解,这里直接使用英文 Reference How to Win a Data Science Competition: Learn from Top Kaggl…
背景: 在拿到的数据里,经常有分类型变量的存在,如下: 球鞋品牌:Nike.adidas. Vans.PUMA.CONVERSE 性别:男.女 颜色:红.黄.蓝.绿 However,sklearn大佬不能直接分析这类变量呀.在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是算法关键部分,而常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间.于是,我们要对这些分类变量进行哑变量处理,又或者叫虚拟变量. 缺点: 当类别的数量很多时,特征空间会变…
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share sklearn.preprocessing.LabelEncoder():标准化标签 standardScaler==features with a m…
1. 标准化(Standardization or Mean Removal and Variance Scaling) 变换后各维特征有0均值,单位方差.也叫z-score规范化(零均值规范化).计算方式是将特征值减去均值,除以标准差. sklearn.preprocessing.scale(X) 一般会把train和test集放在一起做标准化,或者在train集上做标准化后,用同样的标准化器去标准化test集,此时可以用scaler scaler = sklearn.preprocessin…
网络上使用sklearn生成决策树的资料很多,这里主要说明遇见标量数据的处理. 经查验参考资料,sklearn并非使用了课上以及书上讲的ID3算法,而是选择了CART,该算法生成二叉树:scikit-learn使用了一种优化的CART算法,要求元数据为数值型(要能转换为np.float32类型的矩阵),因为该实现同时可以做回归分析.然而,题目数据中有天气等标量数据,所以还要进行转化,这里采用了sklearn中的LabelEncoder来将n个标量转化为1至n-1的整数.将数据训练完毕后,安装并使…
One-Hot编码 What.Why And When? 一句话概括:one hot编码是将类别变量转换为机器学习算法易于利用的一种形式的过程. 目录: 前言: 通过例子可能更容易理解这个概念. 假设我们有一个迷你数据集: 公司名 类别值 价格 VW 1 20000 Acura 2 10011 Honda 3 50000 Honda 3 10000 其中,类别值是分配给数据集中条目的数值编号.比如,如果我们在数据集中新加入一个公司,那么我们会给这家公司一个新类别值4.当独特的条目增加时,类别值将…