RetinaNet论文理解】的更多相关文章

引言 介绍 目前精度高的检测器都是基于two-stage,proposal-driven机制,第一阶段生成稀疏的候选对象位置集,第二阶段使用CNN进一步将每个候选位置分为前景或者背景以及确定其类别: 提出一个one-stage检测器可以匹配two-stage检测器在COCO上AP,例如FPN.Mask R-CNN,为了到达这一结果针对训练过程中类别不平衡这个阻碍问题,设计出一个新的loss,focal loss: R-CNN类检测器可以通过two-stage级联和启发式采用来解决class im…
[论文理解]关于ResNet的理解 这两天回忆起resnet,感觉残差结构还是不怎么理解(可能当时理解了,时间长了忘了吧),重新梳理一下两点,关于resnet结构的思考. 要解决什么问题 论文的一大贡献就是,证明了即使是深度网络,也可以通过训练达到很好的效果,这跟以往的经验不同,以往由于网络层数的加深,会出现梯度消失的现象.这是因为,在梯度反传的时候,由于层数太深,传递过程又是乘法传递,所以梯度值会越乘越小,梯度消失在所难免.那么怎么才能解决这个问题呢?resnet提供了很好的思路. 怎么解决…
[论文理解] CornerNet: Detecting Objects as Paired Keypoints 简介 首先这是一篇anchor free的文章,看了之后觉得方法挺好的,预测左上角和右下角,这样不需要去管anchor了,理论上也就w*h个点,这总比好几万甚至好几十万的anchor容易吧.文章灵感来源于Newell et al. (2017) on Associative Embedding in the context of multi-person pose estimation…
一.R-FCN初探 1. R-FCN贡献 提出Position-sensitive score maps来解决目标检测的位置敏感性问题: 区域为基础的,全卷积网络的二阶段目标检测框架: 比Faster-RCNN快2.5-20倍(在K40GPU上面使用ResNet-101网络可以达到 0.17 sec/image); 2. R-FCN与传统二阶段网络的异同点 图1 R-FCN与传统二阶段网络的异同点相同点:首先,两者二阶段的检测框架(全卷积子网络+RoI-wise subnetwork); 其次两…
YOLO3主要的改进有:调整了网络结构:利用多尺度特征进行对象检测:对象分类用Logistic取代了softmax. 1.Darknet-53 network在论文中虽然有给网络的图,但我还是简单说一下.这个网络主要是由一系列的1x1和3x3的卷积层组成(每个卷积层后都会跟一个BN层和一个LeakyReLU)层,作者说因为网络中有53个convolutional layers,所以叫做Darknet-53(我数了下,作者说的53包括了全连接层但不包括Residual层).下图就是Darknet-…
概述 YOLO(You Only Look Once: Unified, Real-Time Object Detection)从v1版本进化到了v2版本,作者在darknet主页先行一步放出源代码,论文在我们等候之下终于在12月25日发布出来. 新的YOLO版本论文全名叫“YOLO9000: Better, Faster, Stronger”,主要有两个大方面的改进: 第一,作者使用了一系列的方法对原来的YOLO多目标检测框架进行了改进,在保持原有速度的优势之下,精度上得以提升.VOC 200…
这篇博客主要是讲下我在阅读ssd论文时对论文的理解,并且自行使用pytorch实现了下论文的内容,并测试可以用. 开篇放下论文地址https://arxiv.org/abs/1512.02325,可以自行参考论文. 接着放下我使用pytorch复现的版本地址https://github.com/acm5656/ssd_pytorch,如果这篇博客或者代码有帮到你,麻烦给个星哈. 代码解读的博客链接如下https://www.cnblogs.com/cmai/p/10080005.html,欢迎大…
Deep Residual Learning for Image Recognition 简介 这是何大佬的一篇非常经典的神经网络的论文,也就是大名鼎鼎的ResNet残差网络,论文主要通过构建了一种新的网络结构来解决当网络层数过高之后更深层的网络的效果没有稍浅层网络好的问题,并且做出了适当解释,用ResNet很好的解决了这个问题. 背景 深度卷积神经网络已经在图像分类问题中大放异彩了,近来的研究也表明,网络的深度对精度起着至关重要的作用.但是,随着网络的加深,有一个问题值得注意,随着网络一直堆叠…
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 简介 Faster R-CNN是很经典的two-stage的目标检测方法,前面看了Selective Search以为在这里可以用到,但是作者在这篇文章里面没有采用Selective Search方法得到候选框,而是采用了Edge Boxes方法得到的候选框,好吧,再去看看这个方法到底快在哪里.Faster R-CNN分为两个过程,第一个过…
Selective Search for Object Recognition 简介 Selective Search是现在目标检测里面非常常用的方法,rcnn.frcnn等就是通过selective search方法得到候选框,然后进行分类,也就是传统的two stage方法.本篇也是我看到frcnn之后不得不看的一篇论文,大致将自己的理解记录下来,方便以后指正. Selective Search 算法目的 能够得到各种大小的框 由于图像中的物体可以有任意大小,所以selective sear…